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• Train a data-driven model:

• Given input-output pairs, find the map (operator)

• Instantaneous field –> another field

• Initial condition –> steady solution (steady state surrogate 
models)

• Step -> next step (autoregressive 1 step solvers)

• Define the training loop using interoperable PhysicsNeMo-
PyTorch utilities

• Optimized data loaders and data pipes for domain specific 
use cases

• Optimized Model Zoo and layers targeted for Physics-ML 
applications

• Utilities for Distributed training and scaling

• Easily apply performance optimizations like CUDA Graphs, 
AMP

• Utilities for easier logging 

• Checkpointing utilities to save and load checkpoints

• Load model checkpoints without model arguments

• Utilities for deployment and inference 

Developing Physics-ML models using data in PhysicsNeMo
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Developing Physics-ML models using data in PhysicsNeMo
Typical training workflow

  for epoch in range(cfg.max_epochs):
    # wrap epoch in launch logger for console logs
    with LaunchLogger(
      "train",
      epoch=epoch,
      num_mini_batch=len(dataloader),
      epoch_alert_freq=10,
    ) as log:
      for data in dataloader:
        optimizer.zero_grad()
        truevar = data[1]

        # compute forward pass
        outvar = model_branch(data[0][:, 0].unsqueeze(dim=1))

        # Compute data loss
        loss_data = F.mse_loss(outvar, truevar)

        # Compute total loss
        loss = loss_data

        # Backward pass and optimizer and learning rate update
        loss.backward()
        optimizer.step()
        scheduler.step()

      log.log_epoch({"Learning Rate": optimizer.param_groups[0]["lr"]})

    # test model on validation dataset
    with LaunchLogger("valid", epoch=epoch) as log:
      error = validation_step(model_branch, validation_dataloader, epoch)
      log.log_epoch({"Validation error": error})

    # save the checkpoint
    save_checkpoint(
      "./checkpoints",
      models=[model_branch],
      optimizer=optimizer,
      scheduler=scheduler,
      epoch=epoch,
    )

if __name__ == "__main__":
  main()

import hydra
from omegaconf import DictConfig
import torch
import numpy as np
import matplotlib.pyplot as plt
from hydra.utils import to_absolute_path
import torch.nn.functional as F
from torch.utils.data import DataLoader
from itertools import chain

from physicsnemo.models.fno import FNO
from physicsnemo.launch.logging import LaunchLogger
from physicsnemo.launch.utils.checkpoint import save_checkpoint

from utils import HDF5MapStyleDataset

@hydra.main(version_base="1.3", config_path="conf", 
config_name="config_pure_data.yaml")
def main(cfg: DictConfig):

  LaunchLogger.initialize()

  dataset = HDF5MapStyleDataset(
    to_absolute_path("./datasets/Darcy_241/train.hdf5"), device="cuda"
  )
  validation_dataset = HDF5MapStyleDataset(
    to_absolute_path("./datasets/Darcy_241/validation.hdf5"), device="cuda"
  )

  dataloader = DataLoader(dataset, batch_size=2, shuffle=True)

  validation_dataloader = DataLoader(validation_dataset, batch_size=1, shuffle=False)

  model_branch = FNO(
    in_channels=2,
    out_channels=1,
  ).to("cuda")

  optimizer = torch.optim.Adam(
    chain(model_branch.parameters()),
    betas=(0.9, 0.999),
    lr=cfg.start_lr,
    weight_decay=0.0,
  )

  scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=cfg.gamma)
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● Mapping between function spaces (operator)

● Continuous, mesh-independent, 

resolution-invariant

● Global convolutions

● Numerically efficient 

● Clip “excessive” high freq modes

Li, Kovachki, et al. (2021), Fourier neural operator for parametric partial 

differential equations, ICLR 2021

Guibas, Mardani, et al. (2022), Efficient token mixing for transformers via

Fourier Neural Operators
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Inspiration from Vision Transformers

● Significantly more parameter efficient

● Patch original inputs and embed

● E.g. Strided conv2d with embed dim

channels

● Spectral conv similar to FNO 

● spatial mixing, global (using emb

patches)

● MLP channel wise (channel mix) and 

output

Guibas, Mardani, et al. (2022), Efficient token mixing for transformers via 

Adaptive FNO, ICLR 2022

Adaptive Fourier Neural Operators
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Developing Physics-ML models using data in PhysicsNeMo
Using FNOs to create a surrogate model

• Develop a surrogate model that learns a mapping between a permeability field and pressure field, 𝐊 → 𝐔, for a distribution of 
permeability fields 𝐊~𝑝(𝐊).

• The Darcy PDE (Diffusion equation) is a second order, elliptical PDE with the following form:

−∇ ⋅  𝑘 𝐱 ∇ 𝑢 𝐱  =  𝑓 𝐱 , 𝐱 ∈  𝐷,
• 𝑢(𝐱): Flow pressure

• 𝑘(𝐱): Permeability field

• 𝑓(⋅): Forcing function

• 𝐷 =  {𝑥, 𝑦 ∈ 0,1 } with the boundary condition 𝑢(𝐱) = 0, 𝐱 ∈ 𝜕𝐷.

• Both the permeability and flow fields are discretized into a 2D matrix 𝐊, 𝐮 ∈ ℝ𝑁×𝑁.

Input: coefficients (k) Output: solutions (u)
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Leveraging the mesh 

● Mesh-based simulations are central to modeling in 

many disciplines across science and engineering.

● GNNs are a natural choice for data-driven approaches – 

its mesh-based and can cope with geometry 

irregularities and multi-scale physics.

● Forward model – Predict variables of the mesh at time 

t+1 given current mesh at t and history of previous 

meshes.

Graph Neural Networks
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CorrDiff
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