
NVIDIA PhysicsNeMo: An open-source
deep learning framework for physical
systems

Niki Loppi
nloppi@nvidia.com

mailto:nloppi@nvidia.com

• Train a data-driven model:

• Given input-output pairs, find the map (operator)

• Instantaneous field –> another field

• Initial condition –> steady solution (steady state surrogate
models)

• Step -> next step (autoregressive 1 step solvers)

• Define the training loop using interoperable PhysicsNeMo-
PyTorch utilities

• Optimized data loaders and data pipes for domain specific
use cases

• Optimized Model Zoo and layers targeted for Physics-ML
applications

• Utilities for Distributed training and scaling

• Easily apply performance optimizations like CUDA Graphs,
AMP

• Utilities for easier logging

• Checkpointing utilities to save and load checkpoints

• Load model checkpoints without model arguments

• Utilities for deployment and inference

Developing Physics-ML models using data in PhysicsNeMo

Solve / Expt.

z

Data

Model (Training mode)

Model (Inference mode)

GPU

T
R

A
IN

IN
G

IN
FE

R
EN

C
E

3This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Developing Physics-ML models using data in PhysicsNeMo
Typical training workflow

 for epoch in range(cfg.max_epochs):
 # wrap epoch in launch logger for console logs
 with LaunchLogger(
 "train",
 epoch=epoch,
 num_mini_batch=len(dataloader),
 epoch_alert_freq=10,
) as log:
 for data in dataloader:
 optimizer.zero_grad()
 truevar = data[1]

 # compute forward pass
 outvar = model_branch(data[0][:, 0].unsqueeze(dim=1))

 # Compute data loss
 loss_data = F.mse_loss(outvar, truevar)

 # Compute total loss
 loss = loss_data

 # Backward pass and optimizer and learning rate update
 loss.backward()
 optimizer.step()
 scheduler.step()

 log.log_epoch({"Learning Rate": optimizer.param_groups[0]["lr"]})

 # test model on validation dataset
 with LaunchLogger("valid", epoch=epoch) as log:
 error = validation_step(model_branch, validation_dataloader, epoch)
 log.log_epoch({"Validation error": error})

 # save the checkpoint
 save_checkpoint(
 "./checkpoints",
 models=[model_branch],
 optimizer=optimizer,
 scheduler=scheduler,
 epoch=epoch,
)

if __name__ == "__main__":
 main()

import hydra
from omegaconf import DictConfig
import torch
import numpy as np
import matplotlib.pyplot as plt
from hydra.utils import to_absolute_path
import torch.nn.functional as F
from torch.utils.data import DataLoader
from itertools import chain

from physicsnemo.models.fno import FNO
from physicsnemo.launch.logging import LaunchLogger
from physicsnemo.launch.utils.checkpoint import save_checkpoint

from utils import HDF5MapStyleDataset

@hydra.main(version_base="1.3", config_path="conf",
config_name="config_pure_data.yaml")
def main(cfg: DictConfig):

 LaunchLogger.initialize()

 dataset = HDF5MapStyleDataset(
 to_absolute_path("./datasets/Darcy_241/train.hdf5"), device="cuda"
)
 validation_dataset = HDF5MapStyleDataset(
 to_absolute_path("./datasets/Darcy_241/validation.hdf5"), device="cuda"
)

 dataloader = DataLoader(dataset, batch_size=2, shuffle=True)

 validation_dataloader = DataLoader(validation_dataset, batch_size=1, shuffle=False)

 model_branch = FNO(
 in_channels=2,
 out_channels=1,
).to("cuda")

 optimizer = torch.optim.Adam(
 chain(model_branch.parameters()),
 betas=(0.9, 0.999),
 lr=cfg.start_lr,
 weight_decay=0.0,
)

 scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=cfg.gamma)

Py
th

on
 Im

po
rt

s
D

at
a

lo
ad

in
g

M
o

de
l

O
p

ti
m

iz
er

Trainin
g loo

p w
ith loss com

pu
tation

Savin
g m

o
del

4This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

● Mapping between function spaces (operator)

● Continuous, mesh-independent,

resolution-invariant

● Global convolutions

● Numerically efficient

● Clip “excessive” high freq modes

Li, Kovachki, et al. (2021), Fourier neural operator for parametric partial

differential equations, ICLR 2021

Guibas, Mardani, et al. (2022), Efficient token mixing for transformers via

Fourier Neural Operators

5This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Inspiration from Vision Transformers

● Significantly more parameter efficient

● Patch original inputs and embed

● E.g. Strided conv2d with embed dim

channels

● Spectral conv similar to FNO

● spatial mixing, global (using emb

patches)

● MLP channel wise (channel mix) and

output

Guibas, Mardani, et al. (2022), Efficient token mixing for transformers via

Adaptive FNO, ICLR 2022

Adaptive Fourier Neural Operators

6This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Developing Physics-ML models using data in PhysicsNeMo
Using FNOs to create a surrogate model

• Develop a surrogate model that learns a mapping between a permeability field and pressure field, 𝐊 → 𝐔, for a distribution of
permeability fields 𝐊~𝑝(𝐊).

• The Darcy PDE (Diffusion equation) is a second order, elliptical PDE with the following form:

−∇ ⋅ 𝑘 𝐱 ∇ 𝑢 𝐱 = 𝑓 𝐱 , 𝐱 ∈ 𝐷,
• 𝑢(𝐱): Flow pressure

• 𝑘(𝐱): Permeability field

• 𝑓(⋅): Forcing function

• 𝐷 = {𝑥, 𝑦 ∈ 0,1 } with the boundary condition 𝑢(𝐱) = 0, 𝐱 ∈ 𝜕𝐷.

• Both the permeability and flow fields are discretized into a 2D matrix 𝐊, 𝐮 ∈ ℝ𝑁×𝑁.

Input: coefficients (k) Output: solutions (u)

7This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

8This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

9This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Leveraging the mesh

● Mesh-based simulations are central to modeling in

many disciplines across science and engineering.

● GNNs are a natural choice for data-driven approaches –

its mesh-based and can cope with geometry

irregularities and multi-scale physics.

● Forward model – Predict variables of the mesh at time

t+1 given current mesh at t and history of previous

meshes.

Graph Neural Networks

10This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CorrDiff

	Slide 1: NVIDIA PhysicsNeMo: An open-source deep learning framework for physical systems Niki Loppi nloppi@nvidia.com
	Slide 2: Developing Physics-ML models using data in PhysicsNeMo
	Slide 3: Developing Physics-ML models using data in PhysicsNeMo
	Slide 4: Fourier Neural Operators
	Slide 5: Adaptive Fourier Neural Operators
	Slide 6: Developing Physics-ML models using data in PhysicsNeMo
	Slide 7
	Slide 8
	Slide 9: Graph Neural Networks
	Slide 10: CorrDiff

