
End-to-End AI for Science Bootcamp

Simulations are getting larger and more complex

Traditional solution methods are:

• Computationally Expensive

• Plagued by Domain Discretization Techniques

• Not suitable for Data-assimilation or Inverse
problems

Saturating performance in traditional HPC

Atmospheric flows

Finite Volume Methods, Sub-grid scale
modeling

Structural Mechanics

Finite Element Methods

Electromagnetics

Finite Element and Frequency domain
methods

Vibrations / Acoustics

Finite Difference Methods

Problem Size

Geometry Details

Number of Designs

Complexity in Physics

Multiple ways to incorporate AI for Scientific Research and Discovery

Training neural networks using both
data and the governing equations

+

NeMo Framework

Pretrained and Community models from
NGC or HuggingFace

Early development techniques for
researchers/developers

Nemo Inform Nemo
Guardrails

Nemo SteerLM

NeMo : Generative AI BioNeMo : Drug Discovery PhysicsNeMo : Physics-Based ML

Available Models: AlphaFold2, OpenFold,
ESMFold, ESM1, ESM2, ProtGPT2, MEgaMoBART,

MoFlow, DiffDock

Customer Data

Customer
Model

Optimize Train Fine Tune Inference

Customer Application

A Cloud Managed Service for Customize and
Run Generative AI for Computer Aided Drug

Discovery

Using AI in Engineering and Science
Use data and governing equations to gather insight

Inverse and Data Assimilation Parameterized Solutions

Digital Design and ManufacturingOperational Control / Real-time

Turbulence

Molecular Dynamics

Micro-mechanical
Material ModelMedical Imaging

Weather & Climate

Oil & Gas

Robotics

Digital Twins

Autonomous
Ride & Handling

Heatsinks

Aerodynamics

Circuit Design

Physics & Data – Little to no gain from Traditional Solver Physics – Traditional Solver (Speed is a limitation)

Use data and governing equations to gather insight

• Like other domains that see the disruption due to AI

• Using AI in simulations unleashes parallelism, real-time outputs, inverse modeling capabilities and generative
design

Using AI in Engineering and Science

Real-time analysis of multiple scenarios

• What is PhysicsNeMo?

• PhysicsNeMo Architecture, Training

• Physics informed neural networks in PhysicsNeMo

• Data informed neural networks in PhysicsNeMo

• PhysicsNeMo other features and advancements

Agenda

PhysicsNeMo framework: Overview
Framework to build and customize Physics-ML models

SOTA Model Architectures

Easily explore physics-ml model architectures –
Neural Operators, PINNs, GNNs, Diffusion Models.

Multi-domain support

Build physics-ml models for CFD, Heat
Transfer, Structural, Electromagnetics,

Molecular Dynamics

Support

NVIDIA AI Enterprise and experts by your side to keep
projects on track

General Availability – Part of NV AIE (Starting NV AIE 4.0)

AI
DEVELOPERS

Simulation Workflow

Model
Development

PhysicsNeMo Framework

Training Dataset

Distributed Training Model Exploration Inference - AI Surrogate Model

Engineers &
Scientists

Physics based guard-railing

Optimized Training

Accelerate training and throughput by parallelizing
the model and the training data across multi-node.

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝐮) = 0

𝜕𝐮

𝜕𝑡
+ 𝐮 ⋅ ∇𝐮 = −

1

𝜌
∇𝑝 + ∇ ⋅ 𝜈∇𝐮 + 𝜌𝐠

Modular architecture to support domain experts as well as seasoned developers

• PhysicsNeMo Core provides fundamental and
optimized implementations of data pipes, layers,
models and utilities to setup distributed training
pipelines

• PhysicsNeMo Sym provides abstractions to setup
physics ML training with features like geometry
module, PDEs, gradient utilities and optimized
training loop

• OV extension allows easy export of models to
NVIDIA Omniverse for visualization

• General availability via PyPi, NGC Container registry
and open source on GitHub.

PhysicsNeMo framework: Software stack and accessibility

PhysicsNeMo Core

Warp Triton
Logging &

Checkpoints

PhysicsNeMo
Symbolic

OV
Extension

Models
Data Pipe (DALI,

Zarr.)
Physics-ML

Utils
Distributed

Geometry &
Point Clouds

Novel NN architectures

• PhysicsNeMo Model Zoo - Diverse Physics-ML approaches:

• Fully Physics driven AI models

• Fully data driven AI models

• Hybrid (data + Physics) AI models

• Neural Operators:

• Fourier Neural Operator family (FNO, AFNO, PINO)

• DeepONet

• GNNs:

• GraphCast

• MeshGraphNet …

• Diffusion Models:

• DDPM++

• NCSN++

• ADM …

• PDE informed Neural Networks:

• Fourier Feature Network

• Spatial-temporal Fourier Feature Networks

• SIREN Net …

• Bringing novel AI architectures that have demonstrated success
for engineering and science problems

• Using case studies as reference starting points

PhysicsNeMo framework: Open-Source AI for Physics-based ML

How does PhysicsNeMo compliment PyTorch?
Features that can aid data and/or physics driven problems

- Performance Enhancements
CUDA graphs, kernel fusion, JIT compilation, data parallelism,
model parallel, etc.
- Pre-built Network Architectures
Diffusion Models, Neural Hash Encoding, Neural Operators, Graph
Networks, DCT-RNN, several variants of MLPs etc.
- Hydra Configuration
Hyper-parameter tuning and customization
- Data Pipeline
For very large data-driven problems using Zarr, NVComp, GDS
- Data and Inference Tools
Pre-defined datasets for common data formats (VTK, HDF5, …).
Model export functions to TensorRT and Triton
- Integration with Other Products
Omniverse, PySDF, NVFuser, Triton, Tensor RT, DALI, Warp, etc.

- Geometry Module
Integrated, parameterized geometry module with point cloud/SDF
- Symbolic PDE Loss Construction
Automated PDE loss construction using SymPy API
- Automated Optimized Gradient Calculations
Automatic gradient calculations for physics-informed learning with
optimizations such as FuncTorch, AMP16, mesh free derivatives etc.
- Convergence and Stabilization Methods
Mass balance control planes, loss balancing schemes, AdaHessian
support, learning rate annealing, etc.
- Exact Boundary Enforcement
Exact enforcement of continuity or boundary conditions
- Variational Learning
Solving PDE systems using variational formulations

Data & Physics oriented utils Physics oriented utils

PhysicsNeMo
Open-Source on GitHub

• NVIDIA PhysicsNeMo is an open-source
framework for building, training and fine-
tuning Physics-ML models

• Available open-source on GitHub:
https://github.com/NVIDIA/PhysicsNeMo

https://github.com/NVIDIA/modulus
https://github.com/NVIDIA/modulus
https://github.com/NVIDIA/PhysicsNeMo

Physics-ML Success stories - PhysicsNeMo Case-Studies

Sub surface simulations

Resource: Link

Weather modeling

Demo: Link 1, Link 2, Link 3

Automotive CFD

Omniverse Blueprint, NIM

RTX 4090 heat sink design

Demo: Link

Thermal Boiler Digital Twin

Blog: Link, GTC Session: Link

Wind farm Super Resolution

Demo: Link, Blog: Link

Cardiovascular Simulation

Blog: Link

Brain Anomaly Detection

Resource: Link

Carbon capture and storage

Demo: Link, Blog: Link

HRSG Digital Twin

Demo: Link, GTC Session: Link

Brain Aneurysm Simulation

Demo: Link

Data Center Digital Twin

Blog: Link, GTC Session: Link

https://arxiv.org/abs/2404.14447
https://www.youtube.com/watch?v=9vEaImsSCrw
https://www.youtube.com/watch?v=FUUT6IrQjo4
https://www.youtube.com/watch?v=nuT_U1AQz3g
https://github.com/NVIDIA-Omniverse-blueprints/digital-twins-for-fluid-simulation
https://docs.nvidia.com/nim/physicsnemo/domino-automotive-aero/latest/overview.html
https://www.youtube.com/watch?v=Oq2Mpi5pF1w
https://developer.nvidia.com/blog/reducing-power-plant-greenhouse-gasses-using-ai-and-digital-twins/
https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41224/
https://www.youtube.com/watch?v=mQuvYQmdbtw
https://blogs.nvidia.com/blog/siemens-gamesa-wind-farms-digital-twins/
https://developer.nvidia.com/blog/enabling-greater-patient-specific-cardiovascular-care-with-ai-surrogates/
https://github.com/NVIDIA/modulus/tree/main/examples/healthcare/brain_anomaly_detection
https://www.youtube.com/watch?v=bH08wv60Kvg&t=1s
https://developer.nvidia.com/blog/using-carbon-capture-and-storage-digital-twins-for-net-zero-strategies/
https://www.youtube.com/watch?v=JLboPXn6sKI
https://resources.nvidia.com/en-us-supercomputing-2021-virtual-theater/siemens-energy-hrsg-digital-twin
https://www.youtube.com/watch?v=QjY_8xFjsgE
https://blogs.nvidia.com/blog/digital-twins-modulus-wistron/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62600/

Note: This session uses PhysicsNeMo 25.03
Release

Adding Physics laws as soft constraints

Data + PhysicsData Only

𝛿2𝑢

𝛿𝑥2
𝑥 = 1

𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = ෍

𝑥𝑗∈𝑑𝑜𝑚𝑎𝑖𝑛

𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥𝑖 − 𝑓 𝑥𝑖

2

𝐿𝑑𝑎𝑡𝑎 = ෍

𝑥𝑖∈𝑑𝑎𝑡𝑎

(𝑢𝑛𝑒𝑡 𝑥𝑖 − 𝑢𝑡𝑟𝑢𝑒 𝑥𝑖)2

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑑𝑎𝑡𝑎 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑑𝑎𝑡𝑎+ 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Physics only

𝛿2𝑢

𝛿𝑥2
𝑥 = 1 𝑢 0 = 𝑢 1 = 0

𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝐿𝐵𝐶

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Note, this is only one of the many possible ways to incorporate physics knowledge in the model training!

Train a neural network using only physical constraints

• Consider an example problem:

𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 1 = 0

• To solve the PDE using only the equation and BCs, we construct a neural network 𝑢𝑛𝑒𝑡 𝑥 which has a single value input 𝑥 ∈ ℝ and
single value output 𝑢𝑛𝑒𝑡 𝑥 ∈ ℝ.

• We assume the neural network is infinitely differentiable 𝑢𝑛𝑒𝑡 ∈ 𝐶∞ - Use activation functions that are infinitely differentiable

Computing Physics loss as soft constraints

Train a neural network using only physical constraints: Loss formulation

• Construct the loss function. We can compute the second order derivatives
𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2 𝑥 using Automatic differentiation, compute the

integrals using Monte-Carlo integration technique

𝐿𝐵𝐶 = 𝑢𝑛𝑒𝑡 0 − 0)2 + (𝑢𝑛𝑒𝑡 1 − 0 2

𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = න
0

1 𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥 − 𝑓 𝑥 − 0

2

𝑑𝑥 ≈ න
0

1

𝑑𝑥
1

𝑁
෍

𝑖=0

𝑁
𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥𝑖 − 𝑓 𝑥𝑖

2

• Where 𝑥𝑖 are a batch of points in the interior 𝑥𝑖 ∈ 0, 1 . Total loss becomes 𝐿 = 𝐿𝐵𝐶 + 𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

• Minimize the loss using optimizers like Adam

Computing Physics loss as soft constraints

Train a neural network using only physical constraints: Results

• For 𝑓 𝑥 = 1, the true solution is
1

2
𝑥 − 1 𝑥. After sufficient training we have,

Computing Physics loss as soft constraints

Comparison of the solution predicted by Neural Network with the
analytical solution

Framework for AI surrogates using Physics-Based symbolic loss functions

• High-level abstract training framework for training physics-constrained models

• Flexible multi-constraint training workflow with many physics-driven training enhancements

• Symbolic paradigm (keys) which enables gradient calculation automation

PhysicsNeMo Sym

KEY FEATURES:

Abstraction: High level API for domain experts

Automation: Automated loss and gradient calculations for PINNs

training using SymPy

Parallelism: Automated DDP and model parallel setup

Optimization: Similar optimizations as PhysicsNeMo-Launch with

some additions (PINNs AMP)

Monitoring / Logging: Tensorboard

Hydra: Configurable through Hydra

Example Documentation: Comprehensive set of examples for

different physical systems

Leveraging abstracted utils from PhysicsNeMo Sym

• Key questions:

• How to determine domain of interest?

• Full domain

• Boundaries, …

• How to sample the domain?

• Collocation points

• Test functions

• Discretization, …

• How to specify the constraints/losses information?

• Control Volume Formulation

• DifferentiVariational Formulation, …

• al Formulation

• PhysicsNeMo Sym has utilities to simplify such
problem setups. Utils can be used standalone or in
abstracted training definition framework

Physics guided training workflows

PhysicsNeMo Sym’s abstracted Training workflow

Constructive Solid Geometry Tessellated Geometry (STL)

PhysicsNeMo Sym: Anatomy of a project

PhysicsNeMo Sym works by:
• Writing models which include at least one

adaptable function (a NN)
• Writing objective functions as a combination of

these models
• Describing the geometry/dataset where the

models should be evaluated
• Minimizing the objective functions by using the

provided data, by sampling the geometry, or
both

• Running the models to obtain the desired effect

Overview

Physics guided training workflows
PhysicsNeMo Sym approach: Load Hydra

defaults :
- Physicsnemo_default
- scheduler: tf_exponential_lr
- optimizer: adam
- loss: sum
- _self_
scheduler:
decay_rate: 0.95
decay_steps: 200

save_filetypes : "vtk,npz"

training:
rec_results_freq : 1000
rec_constraint_freq: 1000
max_steps : 5000

𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 1 = 0

Physics guided training workflows

@Physicsnemo.main(config_path="conf", config_name="config")
 def run(cfg: PhysicsNeMoConfig) -> None:

 # make geometry
 x = Symbol("x")
 geo = Line1D(0, 1)

 # make list of nodes to unroll graph on
 eq = CustomPDE(f=1.0)
 u_net = FullyConnectedArch(
 input_keys=[Key("x")],
 output_keys=[Key("u")],
 nr_layers=3,
 layer_size=32
)

 nodes = eq.make_nodes() + [u_net.make_node(name="u_network")]

 # make domain
 domain = Domain()

PhysicsNeMo Sym approach: Create geometry, domain, and nodes𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 1 = 0

X=0 X=1

1D geometry
MLP

X u

Use the model architectures from PhysicsNeMo-Sym that are
designed to work with Auto-grad out-of-the-boxPhysicsNeMo:

• physicsnemo.sym.geometry contains implementations of 1D, 2D and 3D primitives
that can be assembled to compose complex geometries

• physicsnemo.sym.tessselation enables import of STL geometries
• Sample point cloud inside and on the surface of generated geometries

PDE and computational nodes:
• Implementations of fundamental governing equations from domains like: Fluid

Mechanics, Linear Elasticity, Electromagnetic, etc.

Physics guided training workflows

 # add constraints

 # bcs
 bc = PointwiseBoundaryConstraint(
 nodes=nodes,
 geometry=geo,
 outvar={"u": 0},
 batch_size=2,
)
 domain.add_constraint(bc, "bc")

 # interior
 interior = PointwiseInteriorConstraint(
 nodes=nodes,
 geometry=geo,
 outvar={"custom_pde": 0},
 batch_size=100,
 bounds={x: (0, 1)},
)
 domain.add_constraint(interior, "interior")

PhysicsNeMo Sym approach: Add constraints𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 1 = 0

X=0 X=1

Automatically select the boundary and interior points

Physics guided training workflows

 # add inferencer
 inference = PointwiseInferencer(
 nodes=nodes,
 invar={"x": np.linspace(0, 1.0, 100).reshape(-1,1)},
 output_names=["u"],
)
 domain.add_inferencer(inference, "inf_data")

 # make solver
 slv = Solver(cfg, domain)

 # start solver
 slv.solve()

if __name__ == "__main__":
 run()

python <script_name>.py
mpirun –np <#GPU> <script_name>.py

PhysicsNeMo Sym approach: Add utils to visualize results, trainer loop

𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 1 = 0

Use the pre-defined optimized training loop

Abstracted and Optimized training loop:
• Solver and Trainer class abstract a lot of complexity of defining the Neural network

training allowing users to focus on problem definition

Problem definition

• Consider the parameterized version of the same problem as before. Suppose we want to determine how the solution changes as we
move the position on the boundary condition 𝑢 𝑙 = 0

• Parameterize the position by variable 𝑙 ∈ 1, 2 and the problem now becomes:

𝐏: ൞
𝛿2𝑢

𝛿𝑥2
𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢 𝑙 = 0

• This time, we construct a neural network 𝑢𝑛𝑒𝑡 𝑥, 𝑙 which has 𝑥 and 𝑙 as input and single value output 𝑢𝑛𝑒𝑡 𝑥, 𝑙 ∈ ℝ.

• The losses become

𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = න
1

2

න
0

1 𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥 − 𝑓 𝑥

2

𝑑𝑥𝑑𝑙 ≈ න
1

2

න
0

1

𝑑𝑥 𝑑𝑙
1

𝑁
෍

𝑖=0

𝑁
𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥𝑖 , 𝑙𝑖 − 𝑓 𝑥𝑖

2

𝐿𝐵𝐶 = න
1

2

𝑢𝑛𝑒𝑡 0, 𝑙
2

+ 𝑢𝑛𝑒𝑡 𝑙, 𝑙
2

𝑑𝑙 ≈ න
1

2

𝑑𝑙
1

𝑁
෍

𝑖=0

𝑁

𝑢𝑛𝑒𝑡(0, 𝑙𝑖)2 + 𝑢𝑛𝑒𝑡(𝑙𝑖 , 𝑙𝑖)2

Parameterized Problems

Results

• For 𝑓 𝑥 = 1, for different values of 𝑙 we have different solutions

Parameterized Problems

Solution to the parametric problem

Problem definition

• For inverse problems, we start with a set of observations and then calculate the causal factors that produced them

• For example, suppose we are given the solution 𝑢𝑡𝑟𝑢𝑒(𝑥) at 100 random points between 0 and 1 and we want to determine the 𝑓 𝑥
that is causing it

• Train two networks 𝑢𝑛𝑒𝑡 𝑥 and 𝑓𝑛𝑒𝑡(𝑥) to approximate 𝑢 𝑥 and 𝑓(𝑥)

𝐿𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ≈ න
0

1

𝑑𝑥
1

𝑁
෍

𝑖=0

𝑁
𝛿2𝑢𝑛𝑒𝑡

𝛿𝑥2
𝑥𝑖 − 𝑓 𝑥𝑖

2

𝐿𝐷𝑎𝑡𝑎 =
1

100
෍

𝑖=0

100

𝑢𝑛𝑒𝑡 𝑥𝑖 − 𝑢𝑡𝑟𝑢𝑒 𝑥𝑖
2

Inverse Problems

Results

• For 𝑢𝑡𝑟𝑢𝑒 𝑥 =
1

48
8𝑥 −1 + 𝑥2 −

3 sin 4𝜋𝑥

𝜋2 the solution for 𝑓(𝑥) is 𝑥 + sin(4𝜋𝑥)

Inverse Problems

Comparison of the true solution for 𝑓 𝑥 and the 𝑓𝑛𝑒𝑡(𝑥) inverted out Comparison of 𝑢_𝑛𝑒𝑡 (𝑥) and train points from 𝑢_𝑡𝑟𝑢𝑒

Problem description

• Composite bar with material of conductivity 𝐷1 = 10 for 𝑥 ∈ (0,1) and 𝐷2 = 0.1 for 𝑥 ∈ (1,2). Point A and C are maintained at
temperatures of 0 and 100 respectively

• Equations: Diffusion equation in 1𝐷

𝑑

𝑑𝑥
𝐷1

𝑑𝑈1

𝑑𝑥
= 0 When 0 < 𝑥 < 1

𝑑

𝑑𝑥
𝐷2

𝑑𝑈2

𝑑𝑥
= 0 When 1 < 𝑥 < 2

• Flux and field continuity at interface (𝑥=1)

𝐷1

𝑑𝑈1

𝑑𝑥
= 𝐷2

𝑑𝑈2

𝑑𝑥
𝑈1 = 𝑈2

1D diffusion

Solution to 1D diffusion
Code snippets – Custom symbolic PDE

Create a child class from physicsnemo’
PDE class

Add the __init__() function to
define any PDE specific arguments

Symbolic input variables using sympy’s
Symbol

Dependent variables defined using
sympy’s Function

Any additional terms that potentially
need to be parameterized can also be

specified as dependent variables

Symbolic PDE. Derivatives are computed
using sympy’s functions 𝑇𝑡 = ∇ ⋅ 𝐷∇𝑇 + 𝑄

Solution to 1D diffusion
Code snippets

Loading hydra configs

Equation and neural
network nodes

Domain and Constraints

Criteria for sub-sampling

Sample the boundary of
geometry

Sample the interior of
geometry

Solution to 1D diffusion
Code snippets

Validators to compare with
experimental/analytical

/solver data

Monitor the quantities of
interest during the runtime

Solver

Tensorboard visualization of loss curves

Results generated from numpy output

Parameterized Solution to 1D diffusion
Problem description and code snippets

• Composite bar with material of conductivity 𝐷1 for 𝑥 ∈ (0,1) and 𝐷2 = 0.1 for 𝑥 ∈ (1,2).

• Solve the problem for multiple values of 𝐷1 in the range (5, 25) in a single training

• Same boundary and interface conditions as before

Fairly simple changes to go from single forward simulation to parameterized simulation

Symbolically parameterize the
variables of choice

(geometric/physical) and
setup the architecture

Specify the appropriate
parameterization to the

constraints

Validation error for 𝐷1 = 10

Problem description

Optional - Inverse Problem – Coupled Spring Mass System

• For the same system, assume we know the analytical solution which is given by:

𝑥1 𝑡 =
1

6
cos 𝑡 +

1

2
cos 3𝑡 +

1

3
cos 2𝑡 ;

𝑥2 𝑡 =
2

6
cos 𝑡 −

1

3
cos 2𝑡 ;

𝑥3 𝑡 =
1

6
cos 𝑡 −

1

2
cos 3𝑡 +

1

3
cos(2𝑡)

• With the above data and the values for 𝑚2, 𝑚3, 𝑘1, 𝑘2, 𝑘3 same as before, use the neural network to find the values of 𝑚1 and 𝑘4

Inverse Problem – Coupled Spring Mass System
Code snippets

Additional network
to invert out the

unknowns

Analytical data

Assimilate the data
using

PointwiseConstraint

Monitors to infer the
inverted quantities

Results

	Slide 1: End-to-End AI for Science Bootcamp
	Slide 2: Saturating performance in traditional HPC
	Slide 3: Multiple ways to incorporate AI for Scientific Research and Discovery
	Slide 4: Using AI in Engineering and Science
	Slide 5: Using AI in Engineering and Science
	Slide 6
	Slide 7: PhysicsNeMo framework: Overview
	Slide 8: PhysicsNeMo framework: Software stack and accessibility
	Slide 9: PhysicsNeMo framework: Open-Source AI for Physics-based ML
	Slide 10: How does PhysicsNeMo compliment PyTorch?
	Slide 11: PhysicsNeMo
	Slide 12: Physics-ML Success stories - PhysicsNeMo Case-Studies
	Slide 13
	Slide 14: Adding Physics laws as soft constraints
	Slide 15: Computing Physics loss as soft constraints
	Slide 16: Computing Physics loss as soft constraints
	Slide 17: Computing Physics loss as soft constraints
	Slide 18: PhysicsNeMo Sym
	Slide 19: Physics guided training workflows
	Slide 20: PhysicsNeMo Sym: Anatomy of a project
	Slide 21: Physics guided training workflows
	Slide 22: Physics guided training workflows
	Slide 23: Physics guided training workflows
	Slide 24: Physics guided training workflows
	Slide 25: Parameterized Problems
	Slide 26: Parameterized Problems
	Slide 27: Inverse Problems
	Slide 28: Inverse Problems
	Slide 30: 1D diffusion
	Slide 31: Solution to 1D diffusion
	Slide 32: Solution to 1D diffusion
	Slide 33: Solution to 1D diffusion
	Slide 35: Parameterized Solution to 1D diffusion
	Slide 37: Optional - Inverse Problem – Coupled Spring Mass System
	Slide 38: Inverse Problem – Coupled Spring Mass System

