
N-WAYS TO MULTI-GPU
PROGRAMMING

2
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-GPU PROGRAMMING

What will we cover?

• Goal: Developing CUDA-aware multi-node multi-GPU applications

• Profiling the application with NVIDIA Nsight Systems

• Communication architecture and system topology

• Optimizations such as overlapping compute and communication

• CUDA concepts like streams and events

• GPUDirect technologies like P2P and RDMA

• Communication libraries: MPI, NVIDIA NCCL and NVSHMEM

3
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Multiple GPUS
Accelerating at all scales

• Unified Memory

• Multi-Process Service – GROMACS blog

• NVLink / NVSwitch and new NVLink Switch!

• CUDA-aware MPI

• NVSHMEM

• NCCL – multi-GPU/node communication primitives

• GPUDirect – comms between GPUs

• intra- and inter-node

• now also to storage

• Networking – DPU, SHARP

• Analysis: Nsight tools

• Note: DL Frameworks on NGC and many other HPC applications already have multiGPU and multi-node
support built in

GPU

Node
System

…

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig/
https://www.nvidia.com/en-gb/data-center/nvlink/
https://www.nvidia.com/en-gb/data-center/nvlink/
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nccl
https://developer.nvidia.com/gpudirect
https://www.nvidia.com/en-gb/networking/
https://developer.nvidia.com/tools-overview

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

APPLICATION OVERVIEW
Solving Laplacian Equation using iterative Jacobi Method

• Dirichlet boundary conditions on left and right boundaries

• Periodic boundary conditions on top and bottom boundaries

• Jacobi method pseudocode while the grid has not converged:

Halo Exchange

Do Jacobi step:

Apply periodic boundary conditions

Swap a_new and a

Next iteration

for(int iy = 1; iy < ny-1; iy++)

for(int ix = 1; ix < ny-1; ix++)

a_new[iy*nx+ix] = -0.25 *

-(a[iy *nx+(ix+1)] + a[iy *nx+ix-1]

+ a[(iy-1)*nx+ ix] + a[(iy+1)*nx+ix]);

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DOMAIN DECOMPOSITION

Minimize number of neighbors:

Communicate to less neighbors

Optimal for latency bound communication

Minimize surface area/volume ratio:

Communicate less data

Optimal for bandwidth bound communication

Different Ways to split the work between processes:

Contiguous if data is
row-major

Contiguous if data is
column-major

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPUDIRECT FAMILY1
Enabling technologies

GPU pinned memory shared with other
RDMA-capable devices

Avoids intermediate copies

GPUDIRECT SHARED GPU-
SYSMEM

Accelerated GPU-GPU memory copies
Inter-GPU direct load/store access

GPUDIRECT P2P

Direct GPU to 3rd party device transfers
E.g. direct I/O, optimized inter-node
communication

GPUDIRECT RDMA2

Direct GPU to 3rd party device synchronizations
E.g. optimized inter-node communication

GPUDIRECT ASYNC

[1] https://developer.nvidia.com/gpudirect [2] http://docs.nvidia.com/cuda/gpudirect-rdma

https://developer.nvidia.com/gpudirect
http://docs.nvidia.com/cuda/gpudirect-rdma

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DEVELOPMENT CYCLE

▪ Analyze your code to determine
most likely places needing
parallelization or optimization.

▪ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

▪ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Nsight Product Family

Nsight Systems - Analyze
application algorithm system-
wide

Nsight Compute -
Debug/optimize CUDA kernel

Nsight Graphics -
Debug/optimize graphics
workloads

Workflow

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Processes

and

threads

CUDA and

OpenGL API trace

Multi-GPU

Kernel and memory

transfer activities

cuDNN and

cuBLAS trace

Thread/core

migration

Thread state

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

USER ANNOTATIONS APIS FOR CPU & GPU
NVTX, OPENGL, VULKAN, AND DIRECT3D PERFORMANCE

MARKERS

EXAMPLE: VISUAL MOLECULAR DYNAMICS (VMD) ALGORITHMS VISUALIZED WITH NVTX ON CPU

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

EVENT TABLE

12
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MPI & OPENACC TRACE

13
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU IDLE AND LOW UTILIZATION LEVEL OF DETAIL

14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA MEMORY TRANSFER COLOR PALLETTE
SHOW DIRECTION AND PAGEABLE MEMORY HAZARDS

15
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING SEQUENTIAL CODE

NVIDIA Nsight Systems CLI provides

▪ Simple interface to collect data

▪ Can be copied to any system and analysed later

▪ Profiles both serial and parallel code

▪ For more info enter nsys --help on the terminal

To profile a serial application with NVIDIA Nsight Systems, we use NVIDIA Tools Extension
(NVTX) API functions in addition to collecting backtraces while sampling.

Using Command Line Interface (CLI)

16
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING SEQUENTIAL CODE

What is it?

▪ A C-based Application Programming Interface (API) for annotating events

▪ Can be easily integrated to the application

▪ Can be used with NVIDIA Nsight Systems

Why?

▪ Allows manual instrumentation of the application

▪ Allows additional information for profiling (e.g: tracing of CPU events and time ranges)

How?

▪ Import the header only C library nvToolsExt.h

▪ Wrap the code region or a specific function with nvtxRangePush() and nvtxRangPop()

NVIDIA Tools Extension API (NVTX) library

17
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include "laplace2d.h"
#include <nvtx3/nvToolsExt.h>

int main(int argc, char** argv)
{

const int n = 4096;
const int m = 4096;
const int iter_max = 1000;

const double tol = 1.0e-6;
double error = 1.0;

double *restrict A = (double*)malloc(sizeof(double)*n*m);
double *restrict Anew = (double*)malloc(sizeof(double)*n*m);

nvtxRangePushA("init");
initialize(A, Anew, m, n);
nvtxRangePop();

printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);

double st = omp_get_wtime();
int iter = 0;

nvtxRangePushA("while");
while (error > tol && iter < iter_max)
{

nvtxRangePushA("calc");
error = calcNext(A, Anew, m, n);
nvtxRangePop();

nvtxRangePushA("swap");
swap(A, Anew, m, n);
nvtxRangePop();

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

iter++;
}
nvtxRangePop();

double runtime = omp_get_wtime() - st;

printf(" total: %f s\n", runtime);

deallocate(A, Anew);

return 0;
}

jacobi.c
(starting and ending of ranges are
highlighted with the same color)

Open laplace-seq.qdrep with
Nsight System GUI to view the

timeline

“calc” region (calcNext function) takes 26.6%
“swap” region (swap function) takes 23.4% of

total execution time

-t Selects the APIs to be traced (nvtx in this example)

--status if true, generates summary of statistics after the collection

-b Selects the backtrace method to use while sampling. The option dwarf

uses DWARF's CFI (Call Frame Information).

--force-overwrite if true, overwrites the existing results

-o sets the output (qdrep) filename

NVTX range
statistics

18
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING CODE

Open the generated report files (*.qdrep) from
command line in the Nsight Systems profiler.

File > Open

Using Nsight Systems

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING CODE

Navigate through the “view selector”.

“Analysis summary” shows a summary of the profiling
session. To review the project configuration used to
generate this report, see next slide.

“Timeline View” contains the timeline at the top, and a
bottom pane that contains the events view and the
function table.

Read more: https://docs.nvidia.com/nsight-systems

Using Nsight Systems

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

https://docs.nvidia.com/nsight-systems

20
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING CODE

Using Nsight Systems

Timeline view
(event view and function table on the bottom pane)

Analysis Summary

Timeline view
(charts and the hierarchy on the top pane)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

21
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING CODE

duFrom the Timeline view, right click on the “NVTX”
from the top pane and choose “Show in Events View”.

From the bottom pane, you can now see name of the
events captured with the ration.

Viewing captured NVTX events and time
ranges via Nsight Systems GUI

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROFILING: NVIDIA NSIGHT SYSTEMS

• CPU tab: thread-level core utilization data.

• CUDA HW tab: GPU kernel and memory transfer activities.

• Threads tab: each CPU thread's activity like CUDA, MPI, NVTX, etc.

CLI: $ nsys profile --trace=cuda,nvtx --stats=true -o <report_name> --force-overwrite true <program>

Single node Multi-GPU

25
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SINGLE-NODE MULTI-GPU: CUDA MEMCPY

Asynchronous copy timeline

Multi-GPU Jacobi solver:

• Set current device

• Launch device kernel

• Asynchronously copy top halo

• Asynchronously copy bottom halo

• Check norm and swap grid arrays

P
se

u
d
o
c
o
d
e

26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPUDIRECT P2P

Maximizes intra node inter GPU Bandwidth

Avoids Host memory and system topology bottlenecks

GPU1GPU0

GPU3GPU2

GPU4GPU5

GPU6GPU7

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

M
E

M
M

E
M

27
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPUDIRECT P2P

Maximizes intra node inter GPU Bandwidth

Avoids Host memory and system topology bottlenecks

GPU

0

GPU

4

GPU

1

GPU

2

GPU

3

GPU

5

GPU

6

GPU

7

NVSWITCH

28
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SINGLE-NODE MULTI-GPU: P2P

Peer-to-Peer Memory Access bypassing Host
Staging

Pseudocode: C/ C++

• Host staging increases latency and decreases

bandwidth

• Peer-to-Peer (P2P) Memory Access bypasses

host staging and utilizes NVLink and NVSwitch

• CLI to check P2P support:

Check P2P capability

$ nvidia-smi topo –p2p r

Check NVLink-based P2P support

$ nvidia-smi topo –p2p n

29
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INTRA-NODE TOPOLOGY
$ nvidia-smi topo -mCLI:

DGX-1 8 Tesla V100 topology

Partial Output:

Bandwidth and Latency of different connections

30
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA STREAMS

All CUDA calls are either synchronous or asynchronous w.r.t the host

• Synchronous: enqueue work and wait for completion

• Asynchronous: enqueue work and return immediately

• Kernel Launches are asynchronous - Automatic overlap with host

• cudaDeviceSynchronize() makes host wait for GPU operations to finish

SYNCHRONICITY IN CUDA

31
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA STREAMS

• A stream is a queue of device work

• The host places work in the queue and continues on immediately

• The device schedules work from streams when resources are free

• CUDA operations are placed within a stream — e.g. Kernel launches, memory copies

• If no stream is specified, the default stream is used

• Operations within the same stream are ordered (FIFO) and cannot overlap

• Operations in different streams are unordered and can overlap

• ** NB default stream is special case – it is blocking for other streams, so no overlap **

SYNCHRONICITY IN CUDA

32
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA STREAMS

MANAGING STREAMS

• cudaStream_t stream; - Declares a stream handle

• cudaStreamCreate(&stream); - Allocates a stream

• cudaStreamDestroy(stream); - Deallocates a stream

• cudaStreamSynchronize(stream); - Blocks host progress until work in stream has completed

kernel<<< blocks , threads, smem, stream>>>();

cudaMemcpyAsync(dst, src, size, dir, stream);

API

33
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPTIMIZATIONS: CUDA STREAMS AND EVENTS

Timeline using CUDA
streams

Overlap compute and communication with streams:

• Create computation and communication streams

• Use compute stream for Jacobi computation

• Use communication stream for halo exchanges

Create streams

cudaStream_t compute_stream, comm_stream;

cudaStreamCreate(&compute_stream); cudaStreamCreate(&comm_stream);

Use streams

jacobi_kernel<<<dim_grid, dim_block, 0, compute_stream>>>(...);

cudaMemcpyAsync(TopNeighbour, myTopRow, size,

cudaMemcpyDeviceToDevice, comm_stream);

Streams pseudocode

Fine-grained inter-stream synchronization using CUDA events:

Create event

cudaEvent_t event1;
cudaEventCreate(&event1);

Record an event on stream1

cudaEventRecord(&event1, stream1);

Make stream2 wait until event1 occurs

cudaStreamWaitEvent(stream2, event1, 0);

Multi-node Multi-GPU

36
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MESSAGE PASSING INTERFACE - MPI

Standard to exchange data between processes via messages

Defines API to exchanges messages

Point to Point: e.g. MPI_Send, MPI_Recv

Collectives: e.g. MPI_Reduce

Multiple implementations (open source and commercial)

Bindings for C/C++, Fortran, Python, …

E.g. MPICH, OpenMPI, MVAPICH, IBM Platform MPI, Cray MPT, …

37
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MPI - SKELETON
#include <mpi.h>

int main(int argc, char *argv[]) {

int rank,size;

/* Initialize the MPI library */

MPI_Init(&argc,&argv);

/* Determine the calling process rank and total number of ranks */

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

/* Call MPI routines like MPI_Send, MPI_Recv, ... */

...

/* Shutdown MPI library */

MPI_Finalize();

return 0;

}

38
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MPI
Compiling and Launching

$ mpicc -o myapp myapp.c

$ mpirun -np 4 ./myapp <args>

myapp myapp myapp myapp

rank = 0 rank = 1 rank = 2 rank = 3

39
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HANDLING MULTIPLE MULTI GPU NODES

0 1 7… 8 9 15… 16 12 23… 24 25 31…

40
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HANDLING MULTIPLE MULTI GPU NODES
How to determine the local rank? – MPI-3

9/22/2021

MPI_Comm local_comm;

MPI_Info info;

MPI_Info_create(&info);

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank, info, &local_comm);

int local_rank = -1;

MPI_Comm_rank(local_comm,&local_rank);

MPI_Comm_free(&local_comm);

MPI_Info_free(&info);

41
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-NODE MULTI-GPU: MEMCPY + MPI

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status);

Point-to-Point communication example

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

Collective communication example

Single rank per GPU communication model

int local_rank = -1;
MPI_Comm local_comm;
MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank,
MPI_INFO_NULL, &local_comm);
MPI_Comm_rank(local_comm, &local_rank);
MPI_Comm_free(&local_comm);

Obtaining node-level local rank:

Multi-node Jacobi solver:

1. Set current device and local MPI rank

2. Run device kernel and copy halo to host

Exchange halo with MPI pt-2-pt communication

Copy new halo back to device

Check norm with MPI collective communication

42
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA GPUDIRECT
Peer to Peer Transfers

MEM

CPUGPU1

MEM

PCIe

Switch

MEMMEM

GPU0

MEMMEM

IB

43
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA GPUDIRECT
Support for RDMA

MEM

CPUGPU1

MEM

PCIe

Switch

MEMMEM

GPU0

MEMMEM

IB

44
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REGULAR MPI GPU TO REMOTE GPU

cudaMemcpy(s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost);

MPI_Send(s_buf_h,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_h,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

cudaMemcpy(r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice);

cudaMemcpy(s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost);

MPI_Send(s_buf_h,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_h,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

cudaMemcpy(r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice);

cudaMemcpy(s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost);

MPI_Send(s_buf_h,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_h,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

cudaMemcpy(r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice);

cudaMemcpy(s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost);

MPI_Send(s_buf_h,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_h,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

cudaMemcpy(r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice);

cudaMemcpy(s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost);

MPI_Send(s_buf_h,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_h,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

cudaMemcpy(r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice);

MPI Rank 0 MPI Rank 1

GPU

Host

45
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REGULAR MPI GPU TO REMOTE GPU

memcpy H->DMPI_Sendrecvmemcpy D->H

Time

46
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MPI GPU TO REMOTE GPU
Support for RDMA

MPI Rank 0 MPI Rank 1

GPU

Host

MPI_Send(s_buf_d,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_d,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

MPI_Send(s_buf_d,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_d,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

MPI_Send(s_buf_d,size,MPI_CHAR,1,tag,MPI_COMM_WORLD);

MPI_Recv(r_buf_d,size,MPI_CHAR,0,tag,MPI_COMM_WORLD,&stat);

50
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-NODE MULTI-GPU: CUDA-AWARE MPI
Enables several optimizations and improves ease-of-programming

Memcpy + MPI

//MPI rank 0
cudaMemcpy(s_buf_h, s_buf_d, size, cudaMemcpyDeviceToHost);
MPI_Send(s_buf_h, size, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

//MPI rank n-1
MPI_Recv(r_buf_h, size, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &status);
cudaMemcpy(r_buf_d, r_buf_h, size, cudaMemcpyHostToDevice);

//MPI rank 0
MPI_Send(s_buf_d, size, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

//MPI rank n-1
MPI_Recv(r_buf_d, size, MPI_CHAR, 0, 0, MPI_COMM_WORLD,
&status);

CUDA-aware MPI

Optimizations applied transparently to the user:

And several more...

NCCL

52
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA Collective Communications Library (NCCL) 2
Multi-GPU and multi-node collective communication primitives

developer.nvidia.com/nccl

High-performance multi-GPU and
multi-node collective communication
primitives optimized for NVIDIA GPUs

Fast routines for multi-GPU multi-node
acceleration that maximizes inter-GPU
bandwidth utilization

Easy to integrate and MPI compatible.
Uses automatic topology detection to
scale HPC and deep learning applications
over PCIe and NVlink

Accelerates leading deep learning
frameworks such as Caffe2, Microsoft
Cognitive Toolkit, MXNet, PyTorch and
more

Multi-Node:

InfiniBand verbs

IP Sockets

Multi-GPU:

NVLink

PCIe

Automatic

Topology

Detection

53
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-NODE MULTI-GPU: NCCL
Topology-aware communication-centric NVIDIA library

NCCL
Architecture

54
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-NODE MULTI-GPU: NCCL

NCCL optimization: Blue path is taken by CUDA-aware MPI
and Red path is taken by NCCL

// Communicator creation
ncclGetUniqueId(ncclUniqueId* commId);
ncclCommInitRank(ncclComm_t* comm, int nranks, ncclUniqueId commId,
int rank);

// Communicator destruction
ncclCommDestroy(ncclComm_t comm);

// Point-to-point communication
ncclSend(void* sbuff, size_t count, ncclDataType_t type, int peer,
ncclComm_t comm, cudaStream_t stream);
ncclRecv(void* rbuff, size_t count, ncclDataType_t type, int peer,
ncclComm_t comm, cudaStream_t stream);

// Collective communication
ncclAllReduce(void* sbuff, void* rbuff, size_t count, ncclDataType_t type,
ncclRedOp_t op, ncclComm_t comm, cudaStream_t stream);
ncclBroadcast(void* sbuff, void* rbuff, size_t count, ncclDataType_t
type, int root, ncclComm_t comm, cudaStream_t stream);

// Aggregation/Composition
ncclGroupStart();
ncclGroupEnd();

API:

NVSHMEM

56
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVSHMEM

• Offers GPU-centric control of communication from within the parallel region

• For global addressing to local, peer, remote, offers a unified abstraction

57
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-NODE MULTI-GPU: NVSHMEM
GPU-initiated communication to reduce CPU synchronization

overheads

Memory model

__global__ void simple_shift(int *destination) {
int mype = nvshmem_my_pe();
int npes = nvshmem_n_pes();
int peer = (mype + 1) % npes;

nvshmem_int_p(destination, mype, peer);
}

Left Shift device kernel: NVSHMEM's Hello World

58
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVSHMEM

shmem_init – set up communication, including CUDA P2P, IPC

shmem_malloc – get pointer to perform allocation on local GPU

shmem_ptr – given a PE, get the base address of the symmetric heap on remote GPU

Inside or outside of GPU kernel

ld/st using offsets relative to that base address

put/get for abstracted communications

collectives

Programming abstraction for comms among GPUs

Process

(PE)

Process

(PE)

GPU GPU

Partitioned global virtual

address space

59
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MULTI-NODE MULTI-GPU: NVSHMEM

// Using NVSHMEM with MPI

nvshmemx_init_attr_t attr;
MPI_Comm comm = MPI_COMM_WORLD;
attr.mpi_comm = &comm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

cudaGetDeviceCount(&ndevices);
cudaSetDevice(rank % ndevices);
nvshmemx_init_attr(NVSHMEMX_INIT_WITH_MPI_COMM, &attr);

// Heap allocation
void *nvshmem_malloc(size_t size)

Basic
APIs

Thread-level communication

Thread-
level
communica
tion API

__global__ void stencil_single_step(float *u, float *v, …) {
int ix = get_ix(blockIdx, blockDim, threadIdx);
int iy = get_iy(blockIdx, blockDim, threadIdx);
compute(u, v, ix, iy);
if (iy == 1)

nvshmem_float_p(u+(ny+1)*nx+ix, u[nx+ix], top_pe);
if (iy == ny)

nvshmem_float_p(u+ix, u[ny*nx+ix], bottom_pe);
}

60
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WHAT TO USE
WHEN

Usage Interface Strengths Comments

Inter node MPI Coarse-grained buffers, CPU driven Focused on OpenMPI,

enabled by UCX

GPUDirect

RDMA, async

Avoid staging, more control at GPU Implemented in UCX,

network and storage drivers

Intra node GPUDirect

P2P

Avoid staging Enables multiple GPUs/node

NVSHMEM Symmetric allocation, ease of use

wrt CUDA, less overhead than MPI

Enables direct load/store

over NVLink

Both NCCL Optimized collectives Throughput and latency

MPIs
NCCL

NVSHMEM

GPUDirP2P IB

OpenSHMEM

UCX

61
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Acknowledgment

Copyright © 2022 OpenACC-Standard.org. This material is released by OpenACC-
Standard.org, in collaboration with NVIDIA Corporation, under the Creative Commons
Attribution 4.0 International (CC BY 4.0). These materials may include references to
hardware and software developed by other entities; all applicable licensing and
copyrights apply.

http://openacc-standard.org/
http://openacc-standard.org/
http://openacc-standard.org/

WWW.OPENHACKATHONS.ORG

Learn more at

	Slide 1: N-WAYS TO MULTI-GPU PROGRAMMING
	Slide 2: MULTI-GPU PROGRAMMING
	Slide 3: Multiple GPUS
	Slide 4: APPLICATION OVERVIEW
	Slide 5: DOMAIN DECOMPOSITION
	Slide 6: GPUDIRECT FAMILY1
	Slide 7: DEVELOPMENT CYCLE
	Slide 8: Nsight Product Family
	Slide 9
	Slide 10: USER ANNOTATIONS APIS FOR CPU & GPU NVTX, OPENGL, VULKAN, AND DIRECT3D PERFORMANCE MARKERS EXAMPLE: VISUAL MOLECULAR DYNAMICS (VMD) ALGORITHMS VISUALIZED WITH NVTX ON CPU
	Slide 11: EVENT TABLE
	Slide 12: MPI & OPENACC TRACE
	Slide 13: GPU IDLE AND LOW UTILIZATION LEVEL OF DETAIL
	Slide 14: CUDA MEMORY TRANSFER COLOR PALLETTE SHOW DIRECTION AND PAGEABLE MEMORY HAZARDS
	Slide 15: PROFILING SEQUENTIAL CODE
	Slide 16: PROFILING SEQUENTIAL CODE
	Slide 17
	Slide 18: PROFILING CODE
	Slide 19: PROFILING CODE
	Slide 20: PROFILING CODE
	Slide 21: PROFILING CODE
	Slide 22: PROFILING: NVIDIA NSIGHT SYSTEMS
	Slide 24: Single node Multi-GPU
	Slide 25: SINGLE-NODE MULTI-GPU: CUDA MEMCPY
	Slide 26: GPUDIRECT P2P
	Slide 27: GPUDIRECT P2P
	Slide 28: SINGLE-NODE MULTI-GPU: P2P
	Slide 29: INTRA-NODE TOPOLOGY
	Slide 30: CUDA STREAMS
	Slide 31: CUDA STREAMS
	Slide 32: CUDA STREAMS
	Slide 33: OPTIMIZATIONS: CUDA STREAMS AND EVENTS
	Slide 35: Multi-node Multi-GPU
	Slide 36: MESSAGE PASSING INTERFACE - MPI
	Slide 37: MPI - SKELETON
	Slide 38: MPI
	Slide 39: HANDLING MULTIPLE MULTI GPU NODES
	Slide 40: HANDLING MULTIPLE MULTI GPU NODES
	Slide 41: MULTI-NODE MULTI-GPU: MEMCPY + MPI
	Slide 42: NVIDIA GPUDIRECT™
	Slide 43: NVIDIA GPUDIRECT™
	Slide 44: REGULAR MPI GPU TO REMOTE GPU
	Slide 45: REGULAR MPI GPU TO REMOTE GPU
	Slide 46: MPI GPU TO REMOTE GPU
	Slide 50: MULTI-NODE MULTI-GPU: CUDA-AWARE MPI
	Slide 51: NCCL
	Slide 52: NVIDIA Collective Communications Library (NCCL) 2
	Slide 53: MULTI-NODE MULTI-GPU: NCCL
	Slide 54: MULTI-NODE MULTI-GPU: NCCL
	Slide 55: NVSHMEM
	Slide 56: NVSHMEM
	Slide 57: MULTI-NODE MULTI-GPU: NVSHMEM
	Slide 58: NVSHMEM
	Slide 59: MULTI-NODE MULTI-GPU: NVSHMEM
	Slide 60: WHAT TO USE WHEN
	Slide 61: Acknowledgment
	Slide 62: WWW.OPENHACKATHONS.ORG

