HANDS-ON — MEMORY HIERARCHIES IN CPU/GPU ARCHITECTURES

Siegfried Höfinger

ASC Research Center, TU Wien

October 20, 2025

HANDS-ON — MEMORY HIERARCHIES IN CPU/GPU ARCHITECTURES CUDA MANAGED UNIFIED MEMORY

Exercise

Q1) For a dummy kernel that does nothing else than reading the content of two arrays, a[] and b[], then adding together element by element and storing the results into a third array, c[], determine the bandwidth with the help of 'nsys nvprof' if we make use of cudaMallocManaged() and consider arrays of size 1 GB all throughout.

HANDS-ON — MEMORY HIERARCHIES IN CPU/GPU ARCHITECTURES

CUDA MANAGED UNIFIED MEMORY CONT.

- (A1) i) Examine the below sample program and adjust the dimension of the arrays in case,
 vi ./unified memory example 2.cu
 - ii) Compile and run it via the profiling toolchain nvcc unified_memory_example_2.cu nsys nvprof ./a.out and read out the time spent in KrnlDmmyCalc() ≈ 87946553 ns = 0.087946553 s
 - iii) Calculate the bandwidth like, 3*1~GB/0.087946553~s=34.1~GB/s where the 3 stems from the two read and the one write operation (of arrays $\times[], y[]$ and z[]).
 - iv) Have it confirmed by the visual profiler, nsys-ui

HANDS-ON — MEMORY HIERARCHIES IN CPU/GPU ARCHITECTURES CUDA MANAGED UNIFIED MEMORY CONT.

Exercise

Q2) Considering the previous results, can we get closer to the theoretical memory bandwidth of 1555 GB/s if we call the compute kernel repeatedly within a loop over 100 iterations? How would page faults change then and what else could we do to maximize bandwidth?

CUDA MANAGED UNIFIED MEMORY CONT.

- A2)

 i) Yes, we can do better! Get the below sample program, edit it and make sure that we really call the calculational kernel within a loop over 100 iterations,
 vi ./unified_memory_example_3.cu
 - ii) Again, compile it, run it, profile it and compute the obtained bandwidth from the profile(approximately 930 GB/s);
 - iii) The number of page faults will most likely have reduced now. Memory prefetching or usage of managed global device memory could further increase the bandwidth;
 - iv) Have it confirmed by the visual profiler, nsys-ui