linaroforge

Debugging and Optimizing
Parallel Codes with Linaro Forge

Rudy Shand
Field Application Engineer

e

linaroforge

Agenda

* 10:00 - 12:00 Session 1: Ensuring Program Correctness with Linaro DDT
+ 13:00 - 15:00 Session 2: Performance Engineering with Linaro Performance Reports and Linaro MAP

linaroforge

Bug classification

e
e Crashes — #.
e One or more processes in application terminates A
e Most common and generally easiest to solve /

e Hangs
e Deadlocks - Stuck waiting for something that never happens
e Livelocks - Making local progress, but no global progress

e Race conditions

e One or more threads accessing the same data at the same time in non deterministic way
e Shows up as incorrect answer or sometimes crashes

linaroforge

Linaro Forge
An interoperable toolkit for debugging and profiling

K The de-facto standard for HPC development

e Most widely-used debugging and profiling suite in HPC
e Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities
e Powerful and in-depth error detection mechanisms (including memory debugging)
e Sampling-based profiler to identify and understand bottlenecks
e Available at any scale (from serial to exascale applications)

Easy to use by everyone
e Unique capabilities to simplify remote interactive sessions
e Innovative approach to present quintessential information to users

T

linaroforge

Linaro Forge: Where Most of Top Supercomputers
turn for Performance Excellence

Build reliable and optimized code on multiple Server and HPC architectures

Linaro Forge combines

/]
Z\ | Performance
Linaro DDT Linaro MAP Linaro Engineering for
Perf R i
Market leading, simple to use Effortless performance : o:’manc? Ieports any arCh IteCturea
HPC debugger for C/C++, analysis for experts and a glance, single-page,
Fortran and Python novices alike. application performance at any Scale
applications. summary.

linaroforge

Supported Platforms

et Gomplr | (oo | cce | [son | eco J [wrec] (e] - (T

linaroforge

DDT Ul

File Edit
L

Current Group

Al

1 Process controls

2 Process groups mene QO -
3 Source Code view - = smcncose -

4 Variables — T — :;

5 Evaluate window s "f:
6 Parallel Stack TR

7 Project files ¢ e p

8 Find a file or 07}
function 5

511

Yiew Control

iE"? - A

* Focus on current

Jools Window Help

® Group

512 processes (0-511)

Currently selected:

main (hello.c:141)

1 main (hello.c:148)

o

256 processes (0.2.4.6,8,10,12.14.16.18.20.

171 processes (0.3.6,9,12,15,18.21,24,27,30,... (171 total))

Process Thread
Paused: 512 Playing: 0 Finished: 0
1 {on comp00Q, pid 1003)
(256 total)) Paused: 256 Flayin Finished: 0
Paused: 171
£ helloc X
sprintf(message, “Greetings from process %d!*, my rank); -
printf(“sending message from (%d)\n", my_rank);
dest = 0;
* Use strlen(message)+l to include '\@' */
MPI_Send(message, strlen(message) « 1, MPI CHAR, dest, tag, MPI_COMM WORLD)
beingwWatched--;
{

ny rank == 9 ¢

(source = 1; source < p
printf(“waiting for message
MPI Recvimessage, 180, MPI_CHAR,

source++) {
from (%d)\n

source,

, sSource);
tag, MPI COMM WORLD, &status);

printf(“%s\n", message);:

beingWatched+s+;

}
{i=1; 1< argc; i++)
(argvii] &K !stremplargv(i], "mencrash®))
func3();
(1« 1; 1 < arge; 1++)
(argvii] &5 'stromplargvlil, er*))
) : »
Tracepoints Tracepoint Output Logbook Evaluate
»se Name Value
== bigArray(3)
my_rank |
x+y

Locals Current Line(s)

Locals

Name

angc

argv
beingWatched
bigAray

dest
dynamicArmay
environ

i

message
my_rank

p

source

status

t2

tables

tag

b test

x 0

y

—— 80003

— 10012

Current Stack
*
Value
— 1

— 0

— 50

— 10000
— 12

=]
®

linaroforge

Linaro DDT Debugger Highlights

Inwmvﬂ
Tocspr Ot
Toogan | oo | Voo ged

i ams =

eutots (A R A ma o W20 e ™
0k

W80 g, | BT e e
0.k =

wngs (LR g | o) msn o W 2w e ™
@5 s

Wiy wnang. | BT 1 b -
o s =

I s P A ma o W20 e ™
s

oot g, | BT e p
ok =

s S o] et o M e o
s

o T B P e

The scalable print alternative

) Process stopped st watchpaint "rank* in man (Watchmatrix.c45).

Ol vakse: 0
) Now valus: 1074700400
¥ AWy show this window for watchpants

printfCy 1 v contiae | (i || 11 raeat

 (arge

or (1 =8; 1 «SIZF N; ine)

printt (*

Stop on variable change

© helloc %

A This i then your program. your
8/ else

A 4w test=-1;
5}

46
412 void func3()
8

49 void* 1= (void¥) 1;
A 5o hile(in || 1)
51 free((voig*)i):
A\ oceabiity s of type 'void *, When using void pintrs in calculations,the behaviour s undefined.

Left click to add a breakpoint on line 50
5 {

56 typeThree test;

51 typeThree* t2;

58 inti;

Static analysis warnings on
code errors

if (argu[i] & !stremp(arg(i], “crash®)) {
argv[i] = 0;
printf(*%s", *[char **Jargv[il);
14 ve shall s¢ Program Stopped

}
) ' Processes 0-3:
func(); Memary eror detected in mai (helo.c:118):
func2(); nullpointer dereference or unaligned memory access

fprintf(stderr, 'T .)
Noe: the tter may sametimes occur spuriauly guard pags re
1 enabled
beinghatched = 1; Tp:Usethe stck sk and the localvariabesto expore your progran's
curtentstate nd denti th source ofthe o,

test.anotherList. |
est.c= '

tost 0 > Continue
beingWatched = 6;

Detect read/write beyond array

bounds

st vt

B | n | st s,

Detect stale memo

linaroforge

]
B "
Current Group: [All £ Focus on current: ® Group

Create Group
[x & ProjectFiles

You can open and debug one or more core files generated by your application.

B Application Code

Procedure

© print_fra
> @ External Code

1. On the Welcome page click | Open Core Files |. The | Open Core Files | window opens.

Process

Locals

denominator
numerator

Evaluate

Open Core Files x
Executable: |/home/user/examples/a.out
Core files: | /homejuser/core.1234 Add.. il
/home/user/core.2345 =
/home/user/core.3456 %
/home/user/core.4567 2 print_fraction (numerator, 0);
Stacks (All)
Bl
~ main (div-by-zero.c:28)
print_fraction (div-by-zero.c:10)
Help | ok Cancel

2. Select an executable and a set of core files, then click | OK | to open the core files and start

debugging them.

While Linaro DDT is in this mode, you cannot play, pause, or step, because there is no process
active. You are, however, able to evaluate expressions and browse the variables and stack

frames saved in the core files.

View core files for CPU’s
View core files for GPU'’s

Current Line(s) ~ Current Stack
Current Line(s)

linaroforge

Memory debugging menu in Linaro DDT

Run

Run: mpirun -n 8 ./mmult2_c.exe Details

Command: [mpirun -n 8 ./mmult2_c.exe |

When manual linking is used,

¥ CUDA: Track allocations: enabled, Detect invalid accesses: disabled Details u ntiC k 13 P re | Oad 7 bOX
¥ Track GPU allocations (also enables CPU memory debugging)

Detect invalid accesses (memcheck)

¥ Memory Debugging: Fast, 1 guard page after, Backtraces, Preload m
Plugins: none Detail

Help | Options Quit

Memory Debugging Options

v Preload the memory debugging library JLanguage: Recommended

Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library

manually.
Heap Debugging
Fast Balanced Thorough Custom
gram Sto ppe d Enabled Checks: basic More Information
Heap Overflow/Underflow Detection
’ Processes 0-3:

Add guard pages to detect out of bounds heap access

Memory error detected in main (leaky.c:60):

Advanced
over node memory threshold limit
Set node memory threshold at percent
Exemplar node' u101462‘vm1 (process 0) Check heap consistency every heap operations
k v Store stack backtraces for memory allocations

Only enable for these processes:

Help Cancel

linaroforge

Multi-dimensional Array Viewer

What does your data look like at runtime?
Array Expression: [tables[$il[$j] ‘v] [Evaluate]
Distributed Array Dil i [RE] How do | view distributed arrays? Cancel
VieW arrays || staggered Array What does this do? ¥ Align Stack Frames
Range of $i Range of $j || Auto-update
e On a single process From: [0 s om0 5|
e Or distributed on many ranks o e B
Display: [Raws :] Display: [Cdumns :]
Use metavariables to browse the array P—— ——
e Example: Siand §j Data Table | statistics

= Goto @ Visualiza [Export .. Full Window

e Metavariables are unrelated to the variables in your program

i [
e The bounds to view can be specified o WL o 3 o o o 7 o s o u g I
e Visualise draws a 3D representation of the array e SSSIREE
3 4 8 12| 16|
. 4 5[10| 15| 20
Data can also be filtered 5otz ol 20
[} 7| 14| 21| 28
“ e, . e 7
e “Only show if”: Svalue>0 for example Svalue being a specific O L wr
element of the array e e

linaroforge

DDT: Production-scale debugging

Isolate and investigate faults at scale

Who misbehaved?

e Merge stacks from processes and threads
e Sparklines comparing data across processes
e Which MPI rank

Where is the problem?

e Integrated source code editor
e Dynamic data structure visualization

How did it happen?

e Parse diagnostic messages
e Trace variables through execution

Why did it happen?
e Unique “Smart Highlighting”
e Experiment with variable values

]

A}

mmmmmmmmmm

Locals Currenti Line(s) I Current Stack I
Current Line(s) F X
Variable Name l Value l ¥
W |
m_vp. "MII'L 2724 13
[e et
150120 Zinitialize_pop (initial.f90:119)
150120 Zlinit_communicate (communicate f90:87)
AL-ToR b b= o | é--creale_u\:n_cnmmunicamr (communicate f90:300)

linaroforge

Python Debugging

Linaro DDT - Linaro Forge 23.1

+ Debug Features BE 2 E R NRE ® >
+ Sparklines for Python variables Current Group: (AL . Process © Thread
+ Tracepoints i
. reate Group
® MDA Vlewer x & Project Files mmult... Locals Current Line(s) Current Stack
. 3 @ nr == 0: Locals
+ Mixed language support - . R R Voo g
. :z:‘r':;' :) ; . :i?;zr:_estyle_array_“. =;":|z;py‘"
+ Improved Evaluations: o ' ; S — i
. . B 1zma.py kernel RCE
° Matrlx ObjeCtS > machinery.py ° - ma;_:
. & main. i z yle_. nat_a) mat_|
+ Array objects , maﬁuiis,,y (e, y at o
@ matfuncs.
+ Pandas DataFrame . 3 (N I NN hon
+ Series objects . | o2
(i+1) *msli
& memmap.py (i+1) *msli
o Py‘thon Specific: Input/Output Breakpoinm Evaluate
Stacks (All) Name | Value
° i rocesses | Function ~ mslice
Stop On uncaught Python exceptlon _r ‘f<m‘0(liule>‘(aIIinea_ddt_trace.py:155)‘ nproc ::12
+ Show F-string variables ——— i

main (mmult.py:134)

+ Mpi4py, NumPy, SciPy

ddt --connect mpirun -n 8 python3
%allinea_python_debug% ./ mmult.py

linaroforge

Debugging Nvidia GPUs

Using Linaro DDT

Debug code simultaneously on the A100 GPU >EEnSBEEBEUE! O

Current Group: | All ~ [Focus on current: (® Group () Process

and the CPU o () 0 20 5) 0)))))))))))))))))) o)) e G
e i e e
[Project Fles B® | & ypy.visualize-mpi.cu X Locals | CumrentLine(s) Current Stack
SR
Controlling the GPU execution: b e s - =,
° All active threads in a warp will execute in lockstep. & v —

Therefore, DDT will step 32 threads at a time.
° Play/Continue runs all GPU threads

® saxpy !
» ¥ Extemal Code

U Pause will pause a running kernel

Key (additional) GPU features:

° Kernel Progress View rproiepie | reskpots | eihpoins | Stack ()| Kemel Progressview | acspons | acepaot otgir | ogbock o owvices [JERNRE
o s @8 ey pevices
Kernel Processes. Progress Attribute Name Value

GPU thread in parallel stack view I Twbod pp—

[]
° GPU Thread Selector e 1%
° GPU Device Pane

[not scheduled [l scheduled [l selected

For NVIDIA’s nvcc compiler, kernels must be
compiled with the -g and -G flags

linaroforge

Run DDT in offline mode

Run the application under DDT and halt or report when a failure occurs

You can run the debugger in non-interactive mode

e For long-running jobs / debugging at very high scale
e For automated testing, continuous integration...

To do so, use following arguments:
e S ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe
o --offline enable non-interactive debugging
o --output specifies the name and output of the non-interactive debugging session

e Html

e Txt
o Add --mem-debug to enable memory debugging and memory leak detection

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \
--trace-at _jacobi.F90:83,residual \

mpirun ./jacobi omp mpi gnu.exe

linaroforge

Report output
i e e e

=
B

linaroforge
9 Verification

©® @ Validate corrections and

= Vectorization optimal performance
9 Ste p G u I d e Cores ® Understand numerical intensity)

P . . . ® Discover synchronization and vectorization Ie?/el.
0pt|m|Z| ng hlgh performance appl |Cat|0ns overhead and core utilization ® Hot loops, unvectorized code and

GPU performance reveleaed

® Synchronization-heavy code and

Improving the efficiency of your parallel TbloLoaren 2 eveced

software holds the key to solving more
complex research problems faster. ‘ Memory
. = i 3 ' ¢ ® Reveal lines of code bottlenecked by

This pragmatic, 9 Step best practice guide, ' memory access times.

5 o . 3 ® Trace allocation and use of hot data
will help you identify and focus on structure
application readiness, bottlenecks and : o
optimizations one step at a time. Communication

® Track communication performance.

® Discover which communication calls
. . are slow and why.
Vo ©® Detect issues with balance.
® Slow communication calls and

Analyze before you optimize ® Discover lines of code processes.

Bugs @ Measure all performance aspects spending a long time in 1/0. Dive into partitioning code.
® Correct application You can't fix what you can't see. L -;I)-era?t?eer nasnd debug slow access

® Prefer real workloads over artificial tests.

Key :O Linaro Forge
Q Linaro Performance Reports

| %

linaroforge

Linaro Performance Reports

Characterize and understand the performance of HPC application runs

l;l’\\ Gather a rich set of data

(/

_" e Analyses metric around CPU, memory, IO, hardware counters, etc.
Commet;;'ﬂlﬁ,’;zpported e Possibility for users to add their own metrics

@ Build a culture of application performance & efficiency awareness

e Analyses data and reports the information that matters to users
Accurate and

Astute insight e Provides simple guidance to help improve workloads’ efficiency
: ? Adds value to typical users’ workflows
10X e Define application behaviour and performance expectations
Relevant advice e |Integrate outputs to various systems for validation (eg. continuous integration)

to avoid pitfalls ! .
e Can be automated completely (no user intervention)

linaroforge

Linaro Performance Reports

A high-level view of application performance with “plain English” insights

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /

—i .
./Bin/low_freq/../../../../Input/input_250x125_corner.nml | A breakdown of the 16.2% 1/0 time:
2 nodes (8 physical, 8 logical cores per node)

15 GiB per node Time in reads 0.0% |

16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% NN

node-1

ThuJul 92015 10:32:13 Effective process read rate 0.00 bytes/s |

ées/ 57§°"d5 (about 3 minutes) Effective process write rate 1.38 MB/s [N
in/../src

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to
Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

C 20.6% - Time spent running application code. High values are usually good.
om pUte . This is very low; focus on improving MPI or 1/O performance first
> Time spent in MPI calls. High values are usually bad.
MPI 63.2% _ This is high; check the MPI breakdown for advice on reducing it
O 6.2% Time spent in filesystem 1/0. High values are usually bad.
I/ 16. . This is average; check the 1/0 breakdown section for optimization advice

linaroforge

Linaro Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report

Multi-threaded N . SIMD o
| I I A breakdown of the 91.2% CPU time: > A breakdown of how the 53 9% total I/O time was spent:
Single-core code 30.6% M 1 ime i
para e ISm —))) . para”ellsm Time in reads
OpenMP regions 1% Time in writes Memory
Scalar numeric ops ~ 9.5% 1 Est!maued re‘_’d A€l per.process memory usage may also affect scaling:
Vector numeric ops 0.0% | Estimated write ratel 1oy process memory usage 160 Mb [N
Memory — Mostrof the mﬁ isg Peak process me L
transfer rate. This nj
The per-core perform M PI inefficient access p4 Peak node memory ustre
identify time-consum| write calls are affec Lustre file operations (per node;
performance. Ofthe 41.3% total time spentin MP! calls: E;gg?ﬁmﬁf‘;" P @)
No time s spent in V| Time in collective calls 100.0% | processes and mord Mean write
compller's vectorizat] Peak write r: E
be vectorized. Time in point-to-point calls ~ 0.0% | Load nergy
i d collective rate 4.07 bytes/s A T . m b | n Mean file 0P 5 b reakdown of how the 32.3 Wh was used
Estimated point-to-point rate 0 bytes/s | | a a Ce Mean metad CcpPu 61.9% HE
All of the time is spent i llective lls wif r System 38.1%
This suggests a signific] 94.1 _—
synchronization overhe] Ope nMpP Mean node power v
MPI profiler. . Peak node power 98.0 W [N
p A breakdown of the 99.5% time in OpenMP regions: OM P "
. Significant time is spent waiting for memory accesses. Reducing
Computation 58.9% N «—T .
efflCIenC the CPU clock frequency could reduce overall energy usage.
Synchronization 41.0% W y
Physical core utilization 100.0% [l System
—]
System load 99.7% HH -

Significant time is spent synchronizing threads in parallel regions. g
Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

linaroforge

Performance Improvement

i, J, K
= In-memory layout | Excellent spatial locality) Thlnk,
C - T T T T
= [Good spatial locality |
A T T T
X
= [Poor spatial locality |
EB —m: — — — — —
i
= 4096 elements apart
i, K,]
In-memory layout
C
=
A -
X
B

© 2008-2018 by the MIT 6.172 Lecturers

code,

" 4

=)

run, run, run...

...to test and measure many
different implementations

Loop order Running
(outer to inner) time (s)
i, j, k 1155.77
i, K, j 177.68
jy i, k 1080.61
j, k, i 3056.63
k, i, j 179.21
K, J, i 3032.82

i,], K

HO RN (Ciinitais —NOJ I RN E-+ii8)]
0 Rl (Tt = O i P <) B) M
for (int k = @; k < n; ++k) {
: C[i][J] += A[i][k] * B[k][3];
}
5

i, K,]

for (int i = 9@; i < n; ++i) {
for (int k = @; k < n; ++k) {
for (int j = @; j < n; ++j) {
C[i][3] += A[i][k] * B[K][3];

linaroforge

Linaro MAP Source Code Profiler Highlights

Find the peak memory use

- L2 30 ! late to the party
! 1.8% 31 do j=1,20"nprocs; a=st
-— 32 end if
- e 33
348 if (pe /= 8) then
1.6% .. 35 call MPI_SEND(a, size|
1 36 else
A 378 do from=1,nprocs-1
=] [. 38 call MPI_RECV(b, si:
K $.9% 39 do j=1,50; b=sqrt(b]
).1% . 40 print *,"Answer fron
’ 41 end do
42 end 1if
0 o 43 end do
1.0% 44 call MPI BARRIER(MPI COMM
ympute 76 %, MP| 24 %, File I/ el AT =1 T FARRTER(RPT (TR

46 if (pe == 8) print *,"fley
47 = do iterations=1,2
48 a(:) = 1000.0"real(pe+2.

Fix an MPI imbalance

Input/Output | Project Files Main Thread Stacks | Functions

fain Thread Stacks

otal coretime A MPI Function(s) on line Sour
= CallActionsSeparatedConcerns [inlined]... stef
=Call [inlined] Call

=hemelb::net:IteratedAction::CallActi... rett

=hemelb::extraction::PropertyActor:.... Endl

=hemelb::extraction::PropertyWrite... prof
hemelb::extraction::LocalPropert...

80.3% I 80.3% PMPI_File_write_at [3%
<0.1% %6 others
<0.1% 1 other

showing data from 32,768 samples taken over 512 processes (64 per process)

Remove 1?0 bottleneck

| Hide Metrics...

, Sleeping © % | CPU floating-point 0 %; Zoom #1 = ©

Make sure OpenMP regions

make sense

Improve memory access

{

mmult(size, nproc, mat a, mat

res += A[i*size+k]*B[k*size+]]

MPI Finalize();

murite(cize. mat . filename)

Restructure for vectorization

linaroforge

MAP Capabilities

MAP is a sampling based scalable profiler

e Built on same framework as DDT

e Parallel support for MPI, OpenMP, CUDA

e Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis

e Stack traces

e Augmented with performance metrics

Adaptive sampling rate

e Throws data away - 1,000 samples per process
e Low overhead, scalable and small file size

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s

Application activity

CPU floating-point o
319 %
o i e E WS W e Re= s —w— .
Memory usage ey
149 MB
ol

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation %, OpenMP overhez

F hydro.fo0 X

E: CALL timestep()
54 CALL PAV(.TRUE.)

CALL accelerate()

CALL PdV(.FALSE.)

2.6% .)) CALL flux_calc()

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |

OpenMP Stacks
Total core time A~ MPI Overhead Function(s) on line Source
= & clover_leaf [program]
= # clover_leaf CALL clover_init_comms ()
(= hydro CALL hydro
39.7% smsminesmstn Nisstemsensom .8% .1% advection_module::advection
18.1% e [0 # timestep_module::timestep
9 PR
;g:’/: r——— e — Zg_f% 5 Cycles per instruction Chaa ""()
5.0% s 1.2% <0.1% #p 0.83
31% .. L. #a O
26% . .. <0.1% #fl CPU Cycles 383 [T
2.3% o <0.1% #r 51.5G/s

Showing data from 32,000 samples taken over 32 processes (10 .
_ Instructions

615G/s

e

L2 Cache Accesses
379 M /s

L2 Cache Misses .
125 M /s R L PO IR IR A

linaroforge

GPU Profiling

File Edit View Metrics Window Help
Profiled: mixed-cpu-gpu on 3 processes, 1 node, 3 cores (1 per process) Sampled from: Mon Feb 28 21:22:24 2022 for 6.1s Hide Metrics... P rofi Ie

e _

e Supports both AMD and Nvidia GPUs
GPU utilization o - T e Able to bring up metadata of the profile
67.7% - - - T - ot -
e o Mixed CPU [green] / GPU [purple] application
a1%) e CPU time waiting for GPU Kernels [purple]
GPU memery utilzation - e GPU Kernels graph indicating Kernel activity
21:22:24-21:22:30 (6.131s): Main thread compute 3;..2 %, N-IPI 7.3 ‘); Accele-rator 6;.4 % - - o Zoom %1 = ©
* mixed-cpu-gpu.cpp X G UI |nf0rmati0n
f#define BLOCK_SIZE 32 - . .
) #aetine DURATION 3.0 e GUI is consistent across platforms
]:f v _ fxl:;> »;;;1:lef:ixlﬂulHIP(fliﬁt *C, float *A, float *B, int wA, int hA, ° Zoom |nto maln thread aCtIVIty
‘ int 1 = blockldx.y * blockDim.y + threadldx.y; - e Ranked by highest contributors to app time
Input/Output Project Files ~ Main Thread Stacks =~ Functions = GPU Kernels
GPU Kemels @®
Breakdown “ GPU Kemels Source
~ & mixed-cpu-gpu [program] GPU: line-level information is not available for ROCm kernels
28.1% @ MatrixMulHIP

* MatrixMulHIPShared

Showing data from 900 samples taken over 3 processes (300 per process) + Main Thread View

Python Profiling

19.0 adds support for Python

e (Call stacks
e Time in interpreter

Works with MPI4PY

e Usual MAP metrics

Source code view
e Mixed language support

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

: Profiled: python3.5 on 2 processes, 1 node, 2 cores (1 per process) Sampled from: Wed Jan 30 2019 18:49:21 (UTC) for 45.1s Hide Metrics...
— _
CPU floating-point H

33%
POSIX I/O write rate
11.0 kB/s

Memory usage
78.1 MB
0
MPI point-to-point e]
3.77 k calls/s

LRyt
| 18:49:21-18:50:06 (45.068s): Main thread compute 42.5 %, MPI 48.4 %, File 1/0 3.8 %, Python interpreter 5.4 %

‘ # diffusion-v-2d.py X Time spent on line 74 ®

[Breakdown of the 38.3% time
spent on this

+ (ax/ay) Executing instructions 0.0%
* (dx/dy) Calling other functions 91.8% I
Executing Python code 8.2%]

b of
(un [xT high,0: un[xIow:xxhigl

TR TTRRTE
e o s i s

L Lo
1 1

o g I
[- [¥)

| Input/output | Project Files | Main Thread Stacks | Functions |
Main Thread Stacks ®
| Total core time ~ MPI Function(s) on line Source Position

= & python3.5 [program]
= ¢ diffusion-fv-2d.py

= main
array_subtract, array_multiply, array... o h B

@ halo halo(u, xlow, xhigh, nx, ny, comm,

diffusion-fv-2d.py:1

diffusion-fv-2d.py:169
high,1:-1]) * (dy/dx)) (dy*dx)) diffusion-fv-2d.py:74
ank, size) diffusion-fv-2d.py:77

Arm Forge 19.0.2 2 Main Thread View

38.3% s st it st
LT T e —

Showing data from 2,000 samples taken over 2 processes (1000 per process)

map —--profile mpirun -n 2 python ./diffusion-fv-2d.py

linaroforge

Toggle percentage-time and core-time in MAP

File Edit View Metics Reports Window Help
Profiled: slow fon 16 processes, 2 nodes, 16 cores (1 per process) for 1.0m Sampled from: Tue Nov 7 17:10:01 2023 W 0 3@ = Main Thread Only | Hide Metrics

e _
CPU floating-point 100 R R/ 3 _ . - A—
SE \ [\\; \\
3 - - /
9

Memory usage
141 MB
o
17:10:01-17:11:01 (60.855s): Main thread compute 53.1 %, MPI 46.9 %, Sleeping 0.0 % Zoom &1 = ©
¥ slowfo0 X Time spenton line 114 @®
0.85 , 106 arr_in = 4.2 ! dummy data ~ | Breakdown of t!
167 Executing instructions :]
108 ! inefficient memory access pattern (incrementing j in the inner loop) .
109 ! note: some compilers are able to optimize this trivial example by reordering Calling functions 0
110 ! the inner loops - in that case recompile with -00 instead of the default -03| | Time ininstructions executed:
111 v do 1-1,81
112 do 1=1, 8000 Scalar floating-point
0.1s 113 ~ do j=1,2000 Vector floating-point
2.8m - 114 arr_out(3,]) = sqrt(arr_in(3,j) - arr_in(3,3)) + sqrt(arr_in(3i,j) + arr_ Scalar integer
35.65 115 arr_out(1,j) - arr_out(i,j) ' arr_out(i,j)
116 end do Vector integer
117 end do Memory access
118 end do
S Branch
120 ! on a busy workstation some processes often finish faster and wait here . | Otherinstructions
. - B S A T N ; =
InputOutput | ProjectFiles | Main Thread Stacks | Functions | Libraries
Main Thread Stacks @®
Total core time ~ MPI__ Function(s) on line Source Position Library
v & slow_f[program]
v 7 slow program slow slow190:1
~ slow:stride call stride slow.190:11 slow,_f
- arr_out(i,j) = sqrt(arr_in(i,j) - arr.. slowf90:114 slow_f
- arr_out(i,j) = sqrt(arr_in(1,j) - arr.. slowf90:127 slow_f
arr_out(i,j) = arr_out(i,j) * arr_out.. slowf90:115 slow,_f
— arr_out(i,j) = arr_out(i,j) * arr_out.. slowf90:128 slow_f
| 120s mpi_barrier_ call MPI_BARRIER(MPI_COMM_WORLD,ierr) slowf90:121 slow,_f
| | » 5 others
26m » slow:imbalance call imbalance slow.f90:10 slow_f

[KR » slow:overlap call overlap slow90:12 slow,_t

Use for direct comparisons between runs at
the same scale (process/core counts).

e Easily determine if a change has made a
portion of code faster, slower, or largely
unchanged.

e Performance report automatically includes
both percentage-time and core time

e Core-time is an estimation, but should be
very close to the application run time

linaroforge

Libraries tab in MAP

e List time spent in shared libraries (left)
e List entry point functions into the selected library (right)

Input/Output Project Files Main Thread Stacks Functions GPU Kernels Libraries
Libraries

Self time ~ Total Child Library Total core time ~ MPI Overhead Function
et 47.7% B b ioctl
265% s — a— 743% 478% libhsa-runtime64.s0.1.5.50100 <0.1% . munmap
15.5% s 15.5% [mpi] <0.1% _int_free
85% |} - = 1000% 915% mixed-cpu-gpu <0.1% malloc
15% j 17% 02% libamd_comgrso.2.4.50100 <0.1% __memmove_avx_unaligned_erms
<0.1% <0.1% libpthread-2.31.s0 <0.1% __memcmp_avx2_movbe
<0.1% <0.1% <0.1% libstdc++.50.6.0.29

76.0% 76.0% libamdhip64.s0.5.1.50100

Use to identify the libraries that would benefit the most from optimisation or replacement
(e.g. alternative maths library or memory management implementation).

WRF build without enhancements

wrf_neoverse-512tvb.exe -

< > C @ O File:///h pai01/demo/WRF: iton/wrf_neoverse-512tvb_8p_1n_8t_2022-10-16_ ¥¥ @ =
mpirun -n 8 --map-by socket:PE=8 ../main Compute
" /wrf_neoverse-512tvb.exe
Linaro 1 node (64 physical, 64 logical cores per node)
Performance 124 GiB per node
Reports 8 processes, OMP_NUM_THREADS was 8

ip-172-31-25-35.us-west-2.compute.internal e ~

Sun Oct 16 11:07:00 2022 MPI 110
615 seconds (about 10 minutes)

/home/ec2-user/WRFV4.4/main

Summary: wrf_neoverse-512tvb.exe is Compute-bound in this

configuration

68.8% Time spent running application code. High values are usually good.

Com pUte 8% _ This is average; check the CPU performance section for advice
Time spent in MPI calls. High values are usually bad.

MPI 31.0% - This is average; check the MPI breakdown for advice on reducing it

1/0 0.1%

Time spent in filesystem I/0. High values are usually bad.
This is very low; however single-process I/O may cause MPI wait times

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU

Metrics section below.

CPU Metrics

Linux perf event metrics:
Single-core code 5.2%
OpenMP regions 94.8%

Cycles per instruction

L2D cache miss ratio 113
Stalled backend cycles 65.3%
Stalled frontend cycles 2.2%

Most of the time is spent in collective calls with a low transfer
rate. This can be caused by inefficient message sizes, such as
many small messages, or by imbalanced workloads causing

MPI

A breakdown of the 31.0% MPI time:
1 Time in collective calls 68.0% N
| Time in point-to-point calls 320% H
| | Effective process collective rate 45.1 MB/s |
| | Effective process point-to-point rate 938 MB/s [N
|
|

A high number of cycles are stalled in the CPU. A high amount
of memory accesses could be responsible for the non-
exploitation of all the CPU cycles.

1/0
A breakdown of the 0.1% I/O time:

Timae in raade o nee

processes to wait.

OpenMP
A breakdown of the 94.8% time in OpenMP regions:
Camnutatian or_ m—

Linaro Forge

WRF with Arm Performance Libraries

wrf_neoverse-512tvb_armp' X

< » C @ D file:///home/beapaio1/demo/WRFGraviton/wrf_neoverse-512tvb_armpl_8p_1n_8t_2022 ¥ =
mpirun -n 8 --map-by socket:PE=8 ../main Compute
. /wrf_neoverse-512tvb_armpl.exe
Linaro 1 node (64 physical, 64 logical cores per node)
Performance 124 GiB per node

Reports 8 processes, OMP_NUM_THREADS was 8 \
ip-172-31-25-35.us-west-2.compute.internal “ 3
Sun Oct 16 11:23:15 2022 MPI “1/0

570 seconds (about 10 minutes)
/home/ec2-user/WRFV4.4/main

Summary: wrf_neoverse-512tvb_armpl.exe is Compute-bound in
this configuration

o Time spent running application code. High values are usually good.
CO m DUte 68.7% _ This is average; check the CPU performance section for advice
MPI o - Time spent in MPI calls. High values are usually bad.

31.1% This is average; check the MPI breakdown for advice on reducing it

% Time spent in filesystem 1/O. High values are usually bad.
I/O 0.3% This is very low; however single-process 1/O may cause MPI wait times

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
Metrics section below.

CPU Metrics MPI

Linux perf event metrics: A breakdown of the 31.1% MPI time:

Single-core code 5.6% | Time in collective calls 74.2% N

OpenMP regions)4.4% N Time in point-to-point calls 258% W

Cycles per instruction 3 Effective process collective rate 39.9MB/s |

L2D cache miss ratio 1.54 N Effective process point-to-point rate 1.26 GB/s [N

Stalled backend cycles 67.1% Nl Most of the time is spent in collective calls with a low transfer
|

rate. This can be caused by inefficient message sizes, such as
many small messages, or by imbalanced workloads causing
A high number of cycles are stalled in the CPU. A high amount processes to wait.

of memory accesses could be responsible for the non-

exploitation of all the CPU cycles.

Stalled frontend cycles 2.1%

1/0 OpenMP
A breakdown of the 0.3% 1I/O time: A breakdown of the 94.4% time in OpenMP regions: Lina ro Forge

WRF with Arm Performance Libraries and IO compression libraries

wrf_neoverse-512tvb_armp' x

C @ O Ffile:/// /beapaio1/demo/WRF iton/wrf_neoverse-512tvb_armpl_z_8p_1n_8t_20. ¥ @ =

mpirun -n 8 --map-by socket:PE=8 ../main Compute

/wrf_neoverse-512tvb_armpl_z.exe |

Linaro 1 node (64 physical, 64 logical cores per node)
Performance 124 GiB per node
Reports 8 processes, OMP_NUM_THREADS was 8 \
ip-172-31-25-35.us-west-2.compute.internal = SN
Sun Oct 16 11:41:26 2022 MPI 170

540 seconds (about 9 minutes)
/home/ec2-user/WRFV4.4/main

Summary: wrf_neoverse-512tvb_armpl_z.exe is Compute-bound in
this configuration

o Time spent running application code. High values are usually good.
Com DUte 71.8% _ This is high; check the CPU performance section for advice
M] o Time spent in MPI calls. High values are usually bad.

P 27.9% - This is low; this code may benefit from a higher process count

o Time spent in filesystem 1/0. High values are usually bad.
|/O 0.4% This is very low; however single-process 1/0 may cause MPI wait times

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
Metrics section below.

As little time is spent in MPI calls, this code may also benefit from running at larger scales.

Most of the time is spent in collective calls with a low transfer
rate. This can be caused by inefficient message sizes, such as
many small messages, or by imbalanced workloads causing
A high number of cycles are stalled in the CPU. A high amount processes to wait.

of memory accesses could be responsible for the non-

exploitation of all the CPU cycles.

CPU Metrics MPI
Linux perf event metrics: A breakdown of the 27.9% MPI time:
Single-core code 48% | Time in collective calls 69.7% N
OpenMP regions 95.2% . Time in point-to-point calls 303% W
Cycles per instruction) Il Effective process collective rate 56.9 MB/s |
L2D cache miss ratio 1.65 N Effective process point-to-point rate 1.26 GB/s I
Stalled backend cycles 67.2% [l

|

Stalled frontend cycles 2.1%

1/0 OpenMP

A breakdown of the 0.4% I/O time: A breakdown of the 95.2% time in OpenMP reaions: Lina ro Forge

linaroforge

MAP Thread Affinity Advisor

Launch Command: srun -n 16 python3 /global/homes/r/rshand/linaro-forge-training/performance/mmult.py -s 3072
Process Command: S

Global (launcher) environment

Exemplar node's topology (shading shows process affinity bindings):

Submission Seript | Other

SLURM_CPUS_PER_TASK

Package
SLURM_NPROCS
SLURM_NTASKS

SLURM_NTASKS_PER_NODE

Global (launcher) environment variables
List of Environment Variables which were
set at launch which might be relevant to
how threads are distributed.

L1Cache

LICache LiCache

Core Core.

Process-specific env vars (ranks 0,4):

'
LaCache

L‘Cach!w L2Cache || L2Cache

SLURMD_DEBUG 2(ri

SLURM_CPU_BIND

quie

SLURM_CPU_BIND_LIST 0x0

D_TYPE

L1Gache || L1Gache

I i

D_VERBOSE

Process-specific env vars
List of Environment Variables which
might affect the affinity of a given rank.

UTION
01}

| NODE_IPADDR 128.

SLURM_LOCALID 4

‘ NUMANode #2

(multiple items selected)

SLURM_MPI_TYPE cray

- ‘
Commentary:

[ERROR] nid004343, ranks (pmcesses

compute thread. e.g. threads
INFORMATION] 004343, number of threads alocated to node may be less than ideal. 48 are currenty allocated, but consider using 128 (1 per core) fo improved utiization

Commentary
A list of commentary, providing information and
advice on Memory Imbalance, Core Utilization etc.

Snapshot Selector
Change at which point of a run the Affinity data is
shown (Library Load, Initialisation, Finalization).

L3Cache

L2Cache
LiCache L1cw|e LiCache L1Ca:ne LiCache

- I I

L2Cache || L2Cache || L2Cache || L2Cache || L2Cache
LiCache || LiCache || LiCache || LiCache || LiCache

i : I I

Data taken at: Finalization

Exemplar Nodes

Selectable list of exemplars,
allowing ability to switch data
between nodes of a run. Nodes
with similar affinity/structures are
merged.

Available exemplar nodes:
nid004343 (0 similar nodes)

Processes List

List of processes (by MPI rank) of
the selected exemplar. Shows the
key for the node topology diagram
and selecting one shows all threads
for the process.

Processes on exemplar node:
Rank 0 (PID 1166384)
Rank 1 (PID 1166385)
Rank 2 (PID 1166387)

Rank 3 (PID 1166389)

Rank 4 (PID 1166391) -

Rank 5 (PID 1166393)

Threads in selected processes:

pthread (LWP 1167177) 000-0

Threads List

List of all threads for the selected
process. Selecting threads
highlights which cores they are
bound to in the topology view.

pthread (LWP 1166919) 000-0f

Main thread (LWP 1166384) 000-0]
pthread (LWP 1167181) 032-0.
pthread (LWP 1166929) 032-0.

Main thread (LWP 1166391) 032-0:

) contain at least one compute thread which has an overlapping thread affinity mask with another

linaroforge _ iy B /

.‘ 4;‘,1 p
i

Thank you

Go to www.linaroforge.com

mailto:rudy.shand@linaro.org
mailto:support@forge.linaro.com

