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If AI makes decisions … Who explains them?
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XAI | Black-Box, Opaque, Complex models
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https://surendrallam.medium.com/the-evolution-of-ai-a-journey-from-machine-learning-to-agi-b5c23ebfea26



XAI | Motivation
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Let‘s take a step back
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How do humans explain?

6

Dimensions of explanations

WHO
(Who is the explanation for?)

--------------------------------------------------

Domain expert

Decision subject (user)

Auditor / regulator

Developer / data scientist

WHAT
(What Is Being Explained?)

--------------------------------------------------

• Decision / Outcome explanation

• Model transparency explanation

• Scope of the explanation

Global  (behavior)

Local (instance-based)

WHO
(Who is the explanation for?)

--------------------------------------------------

• Domain expert

• Decision subject (end user)

• Auditor / regulator

• Developer / data scientist

WHAT
(What Is Being Explained?)

--------------------------------------------------

• Decision / Outcome explanation

• Model transparency explanation

• Scope of the explanation

Global  (behavior)

Local (instance-based)



How do humans explain?
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• A good explanation is Coherent

• Parts of the explanation fit together

• They are compatible with the existing beliefs and are consistent with the

evidence

• A good explanation is Complete

• No Gap is in the explanation

• A good explanation is Articulate

• Preference for complex explanations (multiple causal paths; explanation length)

• Good explanation has Alternatives

• Explanations might shift our mental model and generate more questions

• -> no single explanation is always the answer



XAI | Interpretable or Explainable?
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Explanation

”Statement, fact, or situation that tells you 
why something happened; a reason given for 
something”

Interpretation

“the particular way in which something is 
understood or explained”



XAI | Interpretable or Explainable?
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Explainability

”… the extent where the feature values of 
an instance are related to its model 
prediction in such a way that humans 
understand.”

Interpretability

“… defined as the amount of consistently 
predicting a model’s result without trying 
to know the reasons behind the scene.”



XAI | Machine Learning Workflow
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Input

Data Analysis Predictive Modeling

Explainable AI

Black-Box

Transparency

Time Ribeiro et. Al., " Why should I trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd 
ACM SIGKDD, 2016.



XAI | Machine Learning Workflow
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✓ Curiosity / learning

✓ Understanding the model's success and failing

✓ Is the model/data biased?

✓ How can we increase trust and acceptance of using such

systems?

✓ How can I improve my model's performance?

✓ Is my model fair? Is it safe (privacy)? Is it reliable (robust)?

✓ Correlation vs Causality

Ribeiro et. Al., " Why should I trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd 

ACM SIGKDD, 2016.

GTC 2021 explainable-ML talks

Augmenting Human Knowledge



XAI | Specific vs Agnostic?
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Model-Specific Model-Agnostic

Input Output

Black Box

Intrinsically Explainable (transparency) Post-Hoc Explainability

Model internals (e.g. Weights) • Feature summary
• Surrogate models



XAI | Local vs Global?
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Global Explanation Local Explanation

LIME

SHAP

Shapely-Values

Partial Dependence Plot

Individual Conditional Expectation

Accumulated Local Effect

Counterfactual Explanations

Feature Importance

Feature Interaction



XAI | Terminology Wrap Up
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XAI Terminology

Can it explain a particular Model?
Model Agnostic

Model Specific

Does it explain a particular sample? Or the entire model?
Global explanation

Local explanation

When does it occure?
Pre-Model

In-Model

Post-Model

Does it mimic the model? Surrogate

https://www.researchgate.net/publication/342358253_Explainable_Deep_Learning_Models_in_Medical_Image_Analysis
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XAI | Tools & Libraries



XAI | Partial Dependance Plot
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Calculate Partial 
Dependence of a feature 

on the predictions

observe the feature's 
effect on the average 

predictions

https://scikit-learn.org/stable/modules/partial_dependence.html#:~:text=Partial%20dependence%20plots%20(PDP)%20show,the%20'complement'%20features).

Drawback: 
does not take the linear dependency of the target 

feature with other features into account



XAI | Accumulated Local Effect
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Calculate Accumulated 
Local effect of a feature 

on the predictions

observe the changes of 
the predictions within 

an interval

Positive: 
takes the linear dependency of the target feature 

with other features into account

https://christophm.github.io/interpretable-ml-book/ale.html



XAI | Local Interpretable Model Agnostic Explanations
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• LIME



XAI | SHapely Additive exPlanations?
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XAI | Diverse Counterfactual Explanations (DiCE)
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XAI | Explainable Boosting Machines 
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• EBM is a glassbox model indented to have 

comparable accuracy to ML models such as 

Random Forest and Boosted Trees as well as 

interpretability capabilities. 

• Type of Generalized Additive Models (GAMS)

• generate predictions by combining multiple functions, each 

representing the influence of a single predictor. These 

functions can be linear or non-linear

• The model is built by adding together the contributions of 

each predictor. This is in contrast to multiplicative models 

where predictors interact with each other.



XAI | Deep Learning Important FeaTures (DeepLift)
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• Learning Important Features Through Propagating 

Activation Differences (ICML 2017)

• Gradient-based interpretability methods

• Goal: give example specific explanations

• For a given example and an output, give importance 

score to individual inputs

• This is done by backpropagating the contributions of all 

neurons in the network to every feature of the input

• Covers only CNNs classifiers – code example here

• https://github.com/kundajelab/deeplift/blob/master/examples/mnist/

MNIST_replicate_figures.ipynb

https://github.com/kundajelab/deeplift/blob/master/examples/mnist/MNIST_replicate_figures.ipynb
https://github.com/kundajelab/deeplift/blob/master/examples/mnist/MNIST_replicate_figures.ipynb
https://github.com/kundajelab/deeplift/blob/master/examples/mnist/MNIST_replicate_figures.ipynb
https://github.com/kundajelab/deeplift/blob/master/examples/mnist/MNIST_replicate_figures.ipynb
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XAI | Capsule Networks

• Capsule Networks

• Use capsules (vectors of neurons) instead of scalar neurons to represent features

• Encode both feature presence and properties (e.g., pose, orientation, scale)

• Employ dynamic routing by agreement to model part, whole relationships

• Are more structurally interpretable than standard CNNs due to explicit hierarchical representations

• Capsule activations are interpretable:

• Vector length indicates confidence, while vector components encode meaningful feature attributes

• Routing coefficients act as explanations:

• They show which lower-level features contributed to which high-level (class) capsules

• Feature-to-decision traceability:

• Decisions can be explained by following the routing paths from input capsules to class capsules

• Less reliance on post-hoc methods:

• Interpretability is largely built into the architecture, rather than added afterward (e.g., via saliency maps)

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
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XAI | Reinforcement Learning

• Definition: learning to choose actions through interaction to maximize long-term reward

• What is explained? Action choices, policies, and long-term strategies rather than single predictions

• Key explanation targets:

• Why a specific action was chosen in a given state

• How decisions contribute to future rewards (expected outcomes)

• Which state features most influenced the policy

• Main XAI approaches:

• Policy explanation: interpret or approximate policies (e.g., rules, trees)

• Value-based explanation: expose Q-values, rewards, and expected returns

• Trajectory explanation: explain sequences of actions over time

• Counterfactuals: “What would happen if the agent acted differently?”

• Why XRL is different? Decisions are sequential and temporal & Explanations must reflect environment dynamics and 

reward structure
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XAI | Neuro-Symbolic AI

• This AI paradigm that integrates neural learning with symbolic reasoning to combine pattern 

recognition with explicit knowledge and logic.

• NSAI’s explainability comes from exposing symbolic logic and rule-based reasoning 

integrated with neural network outputs, making decisions traceable and interpretable in 

structured terms



XAI 
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XAI | Evaluating explanations
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• Quantitative

• Fidelity score

• Feature Importance

• Consistency metrics (i.e., Stability, Robustness)

• User Studies (I.e., Human Model agreements, comprehensibility)

• Completeness – do they capture model behavior across different types of instances?

• Consistency – aligns with the known domain knowledge

• Qualitative

• Use feedbacks (on intuitiveness, understandability)

• User Studies (trust, interactive tools, user confidence)



XAI | Challenges
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• Challenge 1: Evaluation of model explainability and Interpretability

• Challenge 2: Some methods to explain black box models might be 

black box themselves

• Challenge 3: Non-consistent use of terminology (suggestions: Adadi et 

al., 2018 and Guidotti et al., 2018)

• Challenge 4: Lack of research for Explainable ML/AI for time series

• Challenge 5: Coverage of explanations w.r.t. black box models

• Challenge 6: Integration of domain knowledge into XAI (or even AI)
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− AI makes gives suggestions and predictions, 

humans make decisions and assign meaning

− Interpretation is the goal, explanations are the 

means

− There is no single explanation

− Good explanations depend on who, what, and 

scope

− XAI helps us judge trustworthiness

− Not just accuracy, but reliability, fairness, and 

robustness

− Explanations support decisions, not replace them

− Human judgment remains essential

XAI | Summary 



Q & A

30
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